

We Make You Shine

St. JOSEPH'S INSTITUTE OF TECHNOLOGY

(An Autonomous Institution)

St. Joseph's Group of Institutions

OMR, Chennai - 119

DEPARTMENT OF MECHANICAL ENGINEERING

B.E. MECHANCAL ENGINEERING

REGULATIONS -2022

(CHOICE BASED CREDIT SYSTEM)

CURRICULUM AND SYLLABI

I to VIII Semester

DEPARTMENT OF MECHANICAL ENGINEERING

Vision of the Program

➤ To provide knowledge centered education and prepare students for meeting global mechanical engineering challenges thereby enabling them to contribute for the prosperity of the society.

Mission of the Program

- ➤ To impart quality education in the field of mechanical engineering through teaching and learning process.
- ➤ To promote students awareness about the importance of professional ethical practices.
- ➤ To enrich the knowledge in mechanical engineering through research and innovation.
- > To inculcate the spirit of entrepreneurship among students.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Graduates of Mechanical engineering program will have a successful career in Mechanical Engineering and allied industries.

PEO2: Graduates of Mechanical engineering program will have expertise in the areas of Design, Thermal, Materials and Manufacturing.

PEO3: Graduates of Mechanical engineering program will contribute towards technological development through academic research and industrial practices.

PEO4: Graduates of Mechanical engineering program will practice their profession with good communication, leadership, ethics and social responsibility.

PEO5: Graduates of Mechanical engineering program will adapt to evolving technologies through life-long learning.

PROGRAMME OUTCOMES (POs)

PO GRADUATE ATTRIBUTES

- 1. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solution for complex engineering problems and design systems components or process that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environmental and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-Long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 1: Ability to implement new ideas in various fields such as thermal, industrial and product design & development while ensuring best manufacturing practices.

PSO 2: Ability to lead professional career in industries or an entrepreneur by applying engineering and management principles and practices.

PEO / PO MAPPING:

Programme Educational Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
PEO1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
PEO2	√	✓	-	-	-	√	√	-						
PEO3	√	√	√	✓	✓	✓	✓	-	-	-	-	√	✓	√
PEO4	-	-	✓	-	1	√	√	√	√	✓	✓	✓	-	✓
PEO5	✓	✓	✓	✓	✓	√	✓	✓	√	✓	✓	√	✓	✓

We Make You Shine

St. JOSEPH'S INSTITUTE OF TECHNOLOGY

(An Autonomous Institution)

St. Joseph's Group of Institutions

OMR, Chennai - 119

DEPARTMENT MECHANICAL ENGINEERING B.E. MECHANICAL ENGINEERING DECLIA TIONS 2022

REGULATIONS - 2022

(CHOICE BASED CREDIT SYSTEM) CURRICULA AND SYLLABI

SEMESTER I

			SIEKI					
S.	Course	Subject Name	Catagomy	Perio	ds per v	week	Contact	Credits
No.	Code	Subject Ivallie	Category -	L	T	P	Periods	Credits
1	IP4151	Induction Programme		-	-	_	-	0
		THE	ORY					
2	HS4101	Communicative English	HSMC	3	0	0	3	3
3	MA4102	Engineering Mathematics	BSC	3	1	0	4	4
4	PH4103	Engineering Physics	BSC	3	0	0	3	3
5	CY4104	Engineering Chemistry	BSC	3	0	0	3	3
6	GE4105	Problem Solving and Python Programming	ESC	3	0	0	3	3
7	GE4106	Engineering Graphics	ESC	2	0	4	6	4
8	GE4151	தமிழர் மரபு / Heritage of Tamils	HSMC	1	0	0	1	1
		PRACT	ICALS			•		•
9	GE4107	Python Programming Laboratory	ESC	0	0	4	4	2
10	BS4108	Physics and Chemistry Laboratory	BSC	0	0	4	4	2
			Total	18	1	12	31	25
		SEMES	TER II					
S.	Course	Subject Name	Cotogory		ds per v	week	Contact	Crodite
S. No.	Course Code	Subject Name	Category -	Perio L	ods per v T	week P	Contact Periods	Credits
	Code	THE	ORY	L	T	P	Periods	
	Code HS4201	THE Professional English				1		Credits 3
No.	Code	THE	ORY	L	T	P	Periods	
No. 1	Code HS4201	THE Professional English	ORY HSMC	L 3	T	P 0	Periods 3	3
1 2	Code HS4201 MA4202	THE Professional English Statistics and Numerical Methods Materials Science Environmental Science and Engineering	ORY HSMC BSC	3 3	0 1	0 0	Periods 3 4	3 4
1 2 3	HS4201 MA4202 PH4253	THE Professional English Statistics and Numerical Methods Materials Science Environmental Science and Engineering Basic Electrical and Electronics Engineering	ORY HSMC BSC BSC	3 3 3	0 1 0	0 0 0	3 4 3	3 4 3
1 2 3 4	HS4201 MA4202 PH4253 GE4204	THE Professional English Statistics and Numerical Methods Materials Science Environmental Science and Engineering Basic Electrical and Electronics	ORY HSMC BSC BSC BSC	3 3 3 3	0 1 0	0 0 0 0	3 4 3 3	3 4 3 3
1 2 3 4 5	HS4201 MA4202 PH4253 GE4204 BE4251	THE Professional English Statistics and Numerical Methods Materials Science Environmental Science and Engineering Basic Electrical and Electronics Engineering	ORY HSMC BSC BSC BSC ESC	3 3 3 3	0 1 0 0	0 0 0 0	3 4 3 3 3	3 4 3 3
1 2 3 4 5 6	Code HS4201 MA4202 PH4253 GE4204 BE4251 GE4206	THE Professional English Statistics and Numerical Methods Materials Science Environmental Science and Engineering Basic Electrical and Electronics Engineering Engineering Mechanics தமிழரும் தொழில் நுட்பமும்/	HSMC BSC BSC BSC ESC ESC HSMC	3 3 3 3 3	0 1 0 0 0	0 0 0 0 0	3 4 3 3 4 4	3 4 3 3 3 4
1 2 3 4 5 6	Code HS4201 MA4202 PH4253 GE4204 BE4251 GE4206	THE Professional English Statistics and Numerical Methods Materials Science Environmental Science and Engineering Basic Electrical and Electronics Engineering Engineering Mechanics தமிழரும் தொழில் நுட்பமும்/ Tamils and Technology PRACT	HSMC BSC BSC BSC ESC ESC HSMC	3 3 3 3 3	0 1 0 0 0	0 0 0 0 0	3 4 3 3 4 4	3 4 3 3 3 4
1 2 3 4 5 6 7	Code HS4201 MA4202 PH4253 GE4204 BE4251 GE4206 GE4251	THE Professional English Statistics and Numerical Methods Materials Science Environmental Science and Engineering Basic Electrical and Electronics Engineering Engineering Mechanics தமிழரும் தொழில் நுட்பமும்/ Tamils and Technology	ORY HSMC BSC BSC BSC ESC HSMC	3 3 3 3 3 1	0 1 0 0 0 1 0	0 0 0 0 0 0	3	3 4 3 3 3 4
No. 1 2 3 4 5 6 7	Code HS4201 MA4202 PH4253 GE4204 BE4251 GE4206 GE4251 GE4207	THE Professional English Statistics and Numerical Methods Materials Science Environmental Science and Engineering Basic Electrical and Electronics Engineering Engineering Mechanics தமிழரும் தொழில் நுட்பமும்/ Tamils and Technology PRACT Engineering Practices Laboratory Basic Electrical and Electronics	HSMC BSC BSC BSC ESC ESC HSMC	3 3 3 3 3 1	0 1 0 0 0 1 0	0 0 0 0 0 0 0	3	3 4 3 3 4 1

		SEMEST	ER III					
S. No.	Course	Subject Name	Catagomy	Periods per week		week	Contact	Credits
5. Nu.	Code	Subject Name	Category	L	T	P	Periods	Credits
		ТНЕО	RY					
1	MA4352	Transforms and Complex functions	BSC	3	1	0	4	4
2	ME4301	Fluid Mechanics and Machinery	ESC	3	0	0	3	3
3	ME4302	Engineering Thermodynamics	PCC	3	1	0	4	4
4	ME4303	Manufacturing Processes	PCC	3	0	0	3	3
5	ME4304	Engineering Materials and Metallurgy	PCC	3	0	0	3	3
		PRACTI	CALS					
6	ME4306	Computer Aided Machine Drawing Laboratory	ESC	0	0	4	4	2
7	ME4307	Manufacturing Processes Laboratory	PCC	0	0	4	4	2
8	HS4310	Professional Skills	HSMC	0	0	2	2	1
			Total	15	2	10	27	22

		SEMESTI	ER IV							
S. No.	Course	Subject Name	Category	Perio	Periods per week L T P		riods per week Co		Contact	Credits
D. 110.	Code	Subject Name	Category	L			Periods	Cituits		
		THEO	RY							
1	MA4401	Probability and Statistics	BSC	3	1	0	4	4		
2	ME4401	Strength of Materials	ESC	3	0	0	3	3		
3	ME4402	Thermal Engineering	PCC	3	0	0	3	3		
4	ME4403	Hydraulics and Pneumatics	PCC	3	0	0	3	3		
5	ME4404	Metal Cutting and Machine Tools	PCC	3	0	0	3	3		
6	ME4405	Metrology and Measurements	PCC	3	0	0	3	3		
		PRACTIO	CALS							
7	ME4406	Strength of Materials and Fluid Machinery Laboratory	ESC	0	0	4	4	2		
8	ME4407	Internal Combustion Engineering Laboratory	PCC	0	0	4	4	2		
9	ME4408	Machine Tools Laboratory	PCC	0	0	4	4	2		
			Total	18	1	12	31	25		

		SEMES	STER V					т
S.	Course	Subject Name	Category	Perio	ods per v	week	Contact	Credits
No.	Code	Subject Name	Category	L	T	P	Periods	Cicuis
		THE	EORY					
1	ME4501	Design of Machine Elements	PCC	3	1	0	4	4
2	ME4502	Theory of Machines	PCC	3	0	0	3	3
3		Professional Elective Course – I	PEC	3	0	0	3	3
4		Professional Elective Course – II	PEC	3	0	0	3	3
5		Professional Elective Course – III	PEC	3	0	0	3	3
6		Mandatory Course - I	MC	3	0	0	3	0
		PRAC	TICALS					
7	ME4507	Metrology and Dynamics Laboratory	PCC	0	0	4	4	2
8	ME4508	CAD/CAM Laboratory	PCC	0	0	4	4	2
9	ME4509	Summer Internship*	EEC	0	0	0	0	1
			Total	18	1	8	27	21

^{*}Summer Internship carries one credit and it will be done during IV semester summer vacation and same will be evaluated in V semester.

		SEMEST	ER VI					
S.	Course			Perio	ds per	week	Contact	Credits
No.	Code	Subject Name	Category	L	T	P	Periods	Credits
		ТНЕО	RY					
1	ME4601	Heat and Mass Transfer	PCC	3	1	0	4	4
2	CS4655	C Programming and Basics of Data Structures	ESC	3	0	0	3	3
3		Professional Elective Course – IV	PEC	3	0	0	3	3
4	 	Professional Elective Course – V	PEC	3	0	0	3	3
5		Professional Elective Course – VI	PEC	3	0	0	3	3
6	 	Mandatory Course - II	MC	3	0	0	3	0
		PRACTIO	CALS					
7	CS4657	C Programming and Data Structures Laboratory	ESC	0	0	4	4	2
8	ME4608	Heat Transfer, Refrigeration and Air- Conditioning Laboratory	PCC	0	0	4	4	2
9	ME4609	Design and Fabrication Project	EEC	0	0	4	4	2
			Total	18	1	12	31	22

		SEMEST	TER VII					
S.	Course	Subject Name	Cotogowy	Periods per week			Contact	Credits
No.	Code	Subject Name	Category	L	T	P	Periods	Credits
		THE	ORY					
1	ME4701	Mechatronics	PCC	3	0	0	3	3
2	ME4702	Computer Integrated Manufacturing	PCC	3	0	0	3	3
3	GE4791	Human Values and Ethics	HSMC	3	0	0	3	3
4		Professional Elective Course – VII	PEC	3	0	0	3	3
5		Open Elective Course – I	OEC	3	0	0	3	3
		PRACT	TICALS					
6	ME4707	Simulation and Analysis Laboratory	PCC	0	0	4	4	2
7	ME4708	Mechatronics Laboratory	PCC	0	0	4	4	2
	•		Total	15	0	8	23	19

		SEMEST	ΓER VIII					
S.	Course	Subject Name	Category	Periods per week			Contact	Credits
No.	Code	Subject Punic	Cutegory	L	T	P	Periods	Credits
		THE	ORY					
1	GE4792	Industrial Management	HSMC	3	0	0	3	3
2		Open Elective Course – II	OEC	0	0	0	3	3
		PRACT	ΓICALS					
3	ME4807	Project Work	EEC	0	0	20	20	10
			Total	3	0	20	26	16

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 175

HUM	HUMANITIES AND SOCIAL SCIENCES INCLUDING MANAGEMENT COURSES (HSMC)										
S.	Course	Subject Name	Category	Perio	ds per	week	Contact Periods	Credits			
No.	Code	Subject Name	Category	L	Т	P					
1	HS4101	Communicative English	HSMC	3	0	0	3	3			
2	HS4201	Professional English	HSMC	3	0	0	3	3			
3	HS4310	Professional Skills	HSMC	0	0	2	2	1			
4	GE4791	Human Values and Ethics	HSMC	3	0	0	3	3			
5	GE4204	Environmental Science and Engineering	HSMC	3	0	0	3	3			
6	GE4792	Industrial Management	HSMC	3	0	0	3	3			
7	MB4741	Total Quality Management	HSMC	3	0	0	3	3			
8	GE4151	தமிழர் மரபு / Heritage of Tamils	HSMC	1	0	0	1	1			
9	GE4251	தமிழரும் தொழில் நுட்பமும்/ Tamils and Technology	HSMC	1	0	0	1	1			

	BASIC SCIENCE COURSES (BSC)											
S.	Course	Subject Name	Cotogory	Perio	ds per	week	Contact	Credits				
No.	Code	Subject Name	Category	L	T	P	Periods	Credits				
1	MA4102	Engineering Mathematics	BSC	4	0	0	4	4				
2	PH4103	Engineering Physics	BSC	3	0	0	3	3				
3	CY4104	Engineering Chemistry	BSC	3	0	0	3	3				
4	BS4108	Physics and Chemistry Laboratory	BSC	0	0	4	4	2				
5	MA4202	Statistics and Numerical Methods	BSC	4	0	0	4	4				
6	PH4253	Materials Science	BSC	3	0	0	3	3				
7	MA4352	Transforms and Complex functions	BSC	4	0	0	4	4				
8	MA4401	Probability and Statistics	BSC	4	0	0	4	4				

	ENGINEERING SCIENCE COURSES (ESC)										
S.	Course	Carl Sand No.	Cata	Perio	ds per	week	Contact	G 124			
No.	Code	Subject Name	Category	L	Т	P	Periods	Credits			
1	GE4105	Problem Solving and Python Programming	ESC	3	0	0	3	3			
2	GE4106	Engineering Graphics	ESC	2	0	4	6	4			
3	GE4107	Python Programming Laboratory	ESC	0	0	4	4	2			
4	BE4251	Basic Electrical, Electronics Engineering	ESC	0	0	4	2	2			
5	GE4206	Engineering Mechanics	ESC	3	1	0	4	4			
6	GE4207	Engineering Practices Laboratory	ESC	0	0	4	4	2			
7	BE4258	Basic Electrical, Electronics Engineering Laboratory	ESC	0	0	4	2	2			
8	ME4301	Fluid Mechanics and Machinery	ESC	3	0	0	3	3			
9	ME4306	Computer Aided Machine Drawing Laboratory	ESC	0	0	4	4	2			
10	ME4401	Strength of Materials	ESC	3	0	0	3	3			
11	ME4406	Strength of Materials and Fluid Machinery Laboratory	ESC	0	0	4	4	2			
12	CS4655	C Programming and Basics of Data Structures	ESC	3	0	0	3	3			
13	CS4657	C Programming and Data Structures Laboratory	ESC	0	0	4	4	2			

S.	Course	Subject Name	Cotogowy	Perio	ods per week		Contact	G 124
No.	Code	Subject Name	Category	L	T	P	Periods	Credits
1	ME4302	Engineering Thermodynamics	PCC	3	1	0	4	3
2	ME4303	Manufacturing Processes	PCC	3	0	0	3	3
3	ME4304	Engineering Materials and Metallurgy	PCC	3	0	0	3	3
4	ME4307	Manufacturing Processes Laboratory	PCC	0	0	4	4	2
5	ME4402	Thermal Engineering	PCC	3	0	0	3	3
6	ME4403	Hydraulics and Pneumatics	PCC	3	0	0	3	3
7	ME4404	Metal Cutting and Machine Tools	PCC	3	0	0	3	3
8	ME4405	Metrology and Measurements	PCC	3	0	0	3	3

9	ME4407	Internal Combustion Engineering Laboratory	PCC	0	0	4	4	2
10	ME4408	Machine Tools Laboratory	PCC	0	0	4	4	2
11	ME4501	Design of Machine Elements	PCC	3	1	0	4	4
12	ME4502	Theory of Machines	PCC	3	0	0	3	3
13	ME4507	Metrology and Dynamics Laboratory	PCC	0	0	4	4	2
14	ME4508	CAD/CAM Laboratory	PCC	0	0	4	4	2
15	ME4601	Heat and Mass Transfer	PCC	3	1	0	4	4
16	ME4608	Heat Transfer, Refrigeration and Air- Conditioning Laboratory	PCC	0	0	4	4	2
17	ME4701	Mechatronics	PCC	3	0	0	3	3
18	ME4702	Computer Integrated Manufacturing	PCC	3	0	0	3	3
19	ME4707	Simulation and Analysis Laboratory	PCC	0	0	4	4	2
20	ME4708	Mechatronics Laboratory	PCC	0	0	4	4	2

	EMPLOYABILITY ENHANCEMENT COURSES (EEC)										
S.	Course	Subject Name	Catagory	Perio	Periods per week		Contact	Credits			
No.	Code	Subject Name	Category L T P		Periods	Credits					
1	ME4509	Summer Internship*	EEC	0	0	0	0	1			
2	ME4609	Design and Fabrication Project	EEC	0	0	3	4	2			
3	ME4807	Project Work	EEC	0	0	20	20	10			

	SEMESTER V									
	MANDATORY COURSES I									
S.	Course	Calland Name	C-4	Perio	ds per	week	Contact	0 0 0		
No.	Code	Subject Name	Category	L	Т	P	Periods	Credits		
1	MX4001	Introduction to Women and Gender Studies	MC	3	0	0	3	0		
2	MX4002	Elements of Literature	MC	3	0	0	3	0		
3	MX4003	Personality Development through Life Enlightment Skills	MC	3	0	0	3	0		
4	MX4004	Disaster Management	MC	3	0	0	3	0		

	SEMESTER VI									
	MANDATORY COURSES II									
S.	Course	Call and Name	C-4	Perio	ds per week		Contact	G 1'4		
No.	Code	Subject Name	Category	L	Т	P	Periods	Credits		
1	MX4005	Well Being with Traditional Practices	MC	3	0	0	3	0		
2	MX4006	History of Science and Technology in India	MC	3	0	0	3	0		
3	MX4007	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0		
4	MX4008	Industrial Safety	MC	3	0	0	3	0		

	PROFESSIONAL ELECTIVE COURSES (PEC) :VERTICALS									
VERTICAL 1: PRODUCT AND PROCESS DEVELOPMENT										
S.	Subject Name Category							Credits		
No.	Code	Subject Name	Category	L	T	P	Periods	Credits		
1	ME4511	Value Engineering	PEC	3	0	0	3	3		
2	ME4512	CAD/CAM	PEC	3	0	0	3	3		
3	ME4513	Ergonomics in Design	PEC	3	0	0	3	3		
4	ME4514	New Product Development	PEC	3	0	0	3	3		
5	ME4515	Product Life Cycle Management	PEC	3	0	0	3	3		

		VERTICAL 2 : ROBOTI	ICS AND AU	TOMA	TION			
S.	Course	Subject Name	Category	Perio	ds per	week	Contact	Credits
No.	Code	Subject Name	Category	L	T	P	Periods	
1	ME4521	Sensors and Instrumentation	PEC	3	0	0	3	3
2	ME4522	Electrical Drives and Actuators	PEC	3	0	0	3	3
3	ME4523	Embedded Systems and Programming	PEC	3	0	0	3	3
4	ME4524	Robotics	PEC	3	0	0	3	3
5	ME4525	Automation in Manufacturing	PEC	3	0	0	3	3

		VERTICAL 3 : PROCESS EQUI	PMENT AN	D PIPI	NG DE	SIGN		
S.	Course	Subject Name	Category	Perio	Periods per week		Contact	Credits
No.	Code	Subject Name	Category	L	T	P	Periods	Credits
1	ME4531	Non-Destructive Testing Techniques	PEC	3	0	0	3	3
2	ME4532	Plant Layout and Materials Handling	PEC	3	0	0	3	3
3	ME4533	Safety In Material Handling	PEC	3	0	0	3	3
4	ME4534	Process Equipment Design	PEC	3	0	0	3	3
5	ME4535	Design of Pressure Vessels	PEC	3	0	0	3	3

	VERTICAL 4: DIVERSIFIED COURSES GROUP 1									
S.	Course	Subject Name	Name Category Periods per week Contact							
No.	Code	Subject Pulle	cutegory	L	T	P	Periods	Credits		
1	ME4541	Automobile Engineering	PEC	3	0	0	3	3		
2	ME4542	Automotive Materials, Components, Design and Testing	PEC	3	0	0	3	3		
3	ME4543	Power Plant Engineering	PEC	3	0	0	3	3		
4	ME4544	Refrigeration and Air Conditioning	PEC	3	0	0	3	3		
5	ME4545	Power Generation Equipment Design	PEC	3	0	0	3	3		

	VERTICAL 5 : DIVERSIFIED COURSES GROUP II										
S.	Course	Subject Name	Category	Perio	Periods per week		Contact	Credits			
No.	Code	Subject Name	Category	L	T	P	Periods	Credits			
1	ME4551	Electrical Drives and Control	PEC	3	0	0	3	3			
2	ME4552	Turbo Machines	PEC	3	0	0	3	3			
3	ME4553	Design of Transmission Systems	PEC	3	0	0	3	3			
4	ME4554	Finite Element Analysis	PEC	3	0	0	3	3			
5	ME4555	Design for Manufacturing	PEC	3	0	0	3	3			

	VERTICAL 6: DIVERSIFIED COURSES GROUP III										
S.	Course	Subject Name	Catagory	Perio	ds per	week	Contact	Credits			
No.	Code	Subject Name	Category	L	T	P	Periods	Credits			
1	ME4561	Advanced Internal Combustion Engines	PEC	3	0	0	3	3			
2	ME4562	Process Planning and Cost Estimation	PEC	3	0	0	3	3			
3	ME4563	Gas Dynamics and Jet Propulsion	PEC	3	0	0	3	3			
4	ME4564	Operational Research	PEC	3	0	0	3	3			
5	ME4565	Casting and Welding Processes	PEC	3	0	0	3	3			

	VERTICAL 7: DIVERSIFIED COURSES GROUP IV										
S.	Course	Subject Name	Catagory	Perio	ds per	week	Contact	Credits			
No.	Code	Subject Name	Category	L	T	P	Periods	Credits			
1	ME4571	Measurements and Controls	PEC	3	0	0	3	3			
2	ME4572	Environment Sustainability and Impact Assessment	PEC	3	0	0	3	3			
3	ME4573	Lean Manufacturing	PEC	3	0	0	3	3			
4	ME4574	Composite Materials and Mechanics	PEC	3	0	0	3	3			
5	ME4551	Non-traditional Machining Processes	PEC	3	0	0	3	3			

		OPEN ELECTIVE	COURSES (OEC)					
		SEMEST	TER VII						
	OPEN ELECTIVE I								
S.	Course	Subject Name	Cotogowy	Perio	ds per	week	Contact	Credits	
No.	Code	Subject Name	Category	L	T	P	Periods	Credits	
1	OEC414	Basics of Biomedical Instrumentation	OEC	3	0	0	3	3	
2	OEC412	Foundation of Robotics	OEC	3	0	0	3	3	
3	OIT411	Fundamentals of Database Design	OEC	3	0	0	3	3	
4	OMA426	Resource Management Techniques	OEC	3	0	0	3	3	
5	OEE411	Renewable Energy Systems	OEC	3	0	0	3	3	
6	OMA411	Graph Theory and Its Application	OEC	3	0	0	3	3	
7	OAD432	Deep Learning	OEC	3	0	0	3	3	
8	OEC411	IoT Concepts and Applications	OEC	3	0	0	3	3	

9

OCS422

Machine Learning Techniques

3

0

0

OEC

3

	SEMESTER VIII OPEN ELECTIVE II											
S. No.	Course Code	Subject Name	Category	Pe	riods p week	er	Contact Periods	Credits				
110.	Code			L	T	P	1 crious					
1	OEE423	Control Systems	OEC	3	0	0	3	3				
2	OEE421	Electric and Hybrid Vehicle	OEC	3	0	0	3	3				
3	OME423	Additive Manufacturing	OEC	3	0	0	3	3				
4	OME427	Reverse Engineering	OEC	3	0	0	3	3				
5	OMB413	Digital Marketing	OEC	3	0	0	3	3				
6	OAD414	Artificial Intelligence and Machine Learning	OEC	3	0	0	3	3				
7	OCS423	Augmented and Virtual Reality	OEC	3	0	0	3	3				
8	OAD422	Data Science Fundamentals	OEC	3	0	0	3	3				
9	OME416	Testing of Materials	OEC	3	0	0	3	3				

Credits Distribution

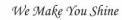
S.	G 1: 4A	Credits Per Semester								Total	Percentage
No.	Subject Area	Ι	II	III	IV	V	VI	VII	VIII	Credits	%
1	Humanities, Science & Management Courses (HSMC)	4	4	1	-	-	-	3	3	15	8.57
2	Basic Science Courses (BSC)	12	10	4	4	-	-	-	-	30	17.14
3	Engineering Science Courses (ESC)	9	11	5	5	-	5	-	-	35	20.00
4	Professional Cores Courses (PCC)	-	-	12	16	11	6	10	-	55	31.43
5	Professional Elective Courses (PEC)	-	-	-	-	9	9	3	-	21	12.00
6	Open Elective Courses (OEC)	-	-	-	-	-	-	3	3	6	3.43
7	Employability Enhancement Courses (EEC)	-	-	-	-	1	2	-	10	13	7.43
8	Mandatory (MC) / Summer Internship (SI)		-	-	√	√	V	-	-	-	-
	Total	25	25	22	25	21	22	19	16	175	100

Semester Wise Course Details

S. No.	Semester	Theory	Laboratory	Mini Project	Project	MC	SI	Total
1	I	7	2	-	-	-	-	9
2	II	7	2	-	-	-	-	9
3	III	5	3	-	-	-	-	8
4	IV	6	3	-	-	-	-	9
5	V	5	2	-	-	1	1	9
6	VI	5	2	1	-	1	-	9
7	VII	5	2	-	-	-	-	7
8	VIII	2	-	-	1	-	-	3
	Total	42	16	1	1	2	1	63

ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor Degree.


For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

VERTICALS FOR MINOR DEGREE

(In addition to all the verticals of other programmes)

Vertical I	Vertical II Vertical II		Vertical IV	Vertical V
Fintech and Block Chain	Entrepreneurship	Public Administration	Business Data Analytics	Environment and Sustainability
Financial Management	Foundations of Entrepreneurship	Principles of Public Administration	Statistics for Management	infrastructure Development
Fundamentals of Investment	Team Building and Leadership Management for Business	Constitution of India	Datamining for Business Intelligence	Sustainable Agriculture and Environmental Management
Banking, Financial Services and Insurance	Creativity and Innovation in Entrepreneurship	Insurance Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials
Introduction to Blockchain and its Applications	Principles of Marketing Management for Business	Administrative Theories	Marketing and Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurs	Indian Administrative System	Operation and Supply Chain Analytics	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis
				Integrated Energy Planning for Sustainable Development
				Energy Efficiency for Sustainable Development

St. JOSEPH'S INSTITUTE OF TECHNOLOGY (An Autonomous Institution)

St. Joseph's Group of Institutions

OMR, Chennai - 119

Department of Mechanical Engineering

LIST OF VALUE ADDED COURSES

S No	Sub Code	Title	Credits
1	MVA001	Small Unmanned Aerial Vehicle (SUAV) - Drone	2
2	MVA002	3D Printing	2
3	MVA003	Elements of Automation and Process Control	1
4	MVA004	Geometric Dimensioning and Tolerancing	2
5	MVA005	Smart Materials and Structures	2
6	MVA006	Green Energy Technologies and Management	2
7	MVA007	Automation Suite for Smart Systems	2
8	MVA008	IoT Applications in Mechanical Engineering	1
9	MVA009	Surface Coating Technology	2
10	MVA010	Energy Resources and Management	2
11	MVA011	Modeling for Design Engineers	2
12	MVA012	Basic Concept of HVAC Designing and Drafting	2
13	MVA013	Robotics Process Automation	2
14	MVA014	Welding and Inspection Techniques	2
15	MVA015	Modern Trends in Refrigeration and Air Conditioning	2
16	MVA016	Finite Element Meshing Techniques	2
17	MVA017	Nanoscience and Technology	2
18	MVA018	Plant Design Management System	2
19	MVA019	Technology for Energy Storage	2
20	MVA020	Modeling Practice for Automotive Assemblies	2
21	MVA021	Modeling and Machining Practice for CNC Machines	2
22	MVA022	Introduction to Multi Body Dynamics	2
23	MVA023	IoT and Augmented Reality Applications in Mechanical Engineering	2

TTC/1101	
HS4101	

COMMUNICATIVE ENGLISH

L	T	P	C
3	0	0	3

OBJECTIVES

- ❖ To develop listening skills to comprehend lectures, ask questions and seek clarifications
- ❖ To improve speaking skills to speak fluently in real contexts
- ❖ To hone reading skills to comprehend different types of texts
- ❖ To enhance writing skills to convey their ideas effectively
- ❖ To strengthen the grammar and general vocabulary

UNIT I	LISTENING TO CONVERSATIONS AND SPEECHES	9					
oneself – exchangin information in a gir Language developm	exts – short formal and informal conversations; Speaking – basics of speaking – introducing ag information – speaking on given topics & situations; Reading – critical reading – finding key even text – sifting facts from opinions; Writing – autobiographical writing – developing hints; ment – Parts of speech – articles – voices – Question types: wh- and yes/no; Vocabulary ixes – suffixes – Polite Expressions.	CO1					
UNIT II	SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS	9					
Listening – TED talks – extensive speech on current affairs and discussions; Speaking – describing a simple process – asking and answering questions; Reading – short narratives and descriptions from newspapers –Reading comprehension texts with varied question types – Writing – paragraph writing – topic sentence – main ideas– free writing, short narrative descriptions using suggested vocabulary and structures – Language development – prepositions, clauses; Vocabulary development – guessing meanings of words in context – use of sequence words.							
UNIT III	READING FOR COMPREHENSION	9					
routine actions and analysis of a text; Language develop	ng to TED talks and long speeches for comprehension; Speaking – roleplay – asking about expressing opinions; Reading– short texts and longer passages (cloze reading) & critical Writing – types of paragraphs and writing essays – rearrangement of jumbled sentences; ment – degrees of comparison – pronouns – Direct vs; Indirect Questions; Vocabulary ms and phrases– cause & effect expressions, adverbs.	CO3					
UNIT IV	FREE WRITING AND EXTENDED WRITING	9					
Reading – comprehended letter writing – e–ndesimple past– prese	Listening – Listening comprehension for English proficiency tests; Speaking –describing friends/places/hobbies; Reading – comprehension – reading longer texts – reading different types of texts – magazines; Writing – informal letter writing – e–mails – conventions of personal email; Language development – Tenses – Simple present – simple past– present continuous and past continuous – conditionals; Vocabulary development– synonyms – antonyms – single word substitutes – Collocations.						
UNIT V GRAMMAR AND LANGUAGE DEVELOPMENT							
Listening – popular speeches and presentations; Speaking – impromptu speeches & debates; Reading – comparisons and contrast; Writing – brainstorming – writing short essays – developing an outline – identifying main and subordinate ideas – dialogue writing; Language development – modal verbs – present/ past perfect tense; Vocabulary development – Phrasal verbs – fixed and semi–fixed expressions.							
	TOTAL: 45 PERIO						

TEXTBOOKS

- 1. Sanjay Kumar & Pushp Lata Communication Skills Second Edition, Oxford University Press: 2015.
- Board of Editors. Using English, A Coursebook for Undergraduate Engineers and Technologists. Orient Black Swan Limited, Hyderabad: 2020
- 3. Richards, C. Jack. Interchange Students 'Book–2 New Delhi: CUP, 2015.

REFERENCE BOOKS

- 1. Bailey, Stephen. Academic Writing: A Practical Guide for Students. New York: Rutledge, 2011.
- 2. Means, L. Thomas and Elaine Langlois. English & Communication for Colleges. Cengage Learning, USA: 2007
- 3. Redston, Chris & Gillies Cunningham Face 2 Face (Pre–intermediate Student's Book & Workbook) Cambridge University Press, New Delhi: 2005
- 4. Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint 2011
- 5. Dutt P. Kiranmai and Rajeevan Geeta Basic Communication Skills, Foundation Books: 2013
- 6. John Eastwood et al: Be Grammar Ready: The Ultimate Guide to English Grammar, Oxford University Press: 2020. .

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Listen and comprehend different spoken discourses/excerpts
CO2	Speak clearly and confidently with one or many listeners using appropriate communicative strategies
CO3	Read different genres of texts adopting various reading strategies
CO4	Write coherently and flawlessly on different topics
CO5	Communicate using a wide vocabulary without grammatical errors

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)												GRAM CCIFIC MES (PSOs)
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								PSO1	PSO2				
CO1	1	1	_	_	_	_	-	_	2	3	-		2	2
CO2	I	1	١	2		١	ı	_	_	3	l	l	2	2
CO3	_	2	_	3	_	_	_	_	_	2	_	_	2	2
CO4		ı		_	_			_	2	2			2	2
CO5		2	1	1	2	_	2	_	_	3	-	_	3	3

N	ΙΛ	11	02
IVI		-	UZ

ENGINEERING MATHEMATICS

L	T	Р	C
3	1	0	4

OBJECTIVES

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- ❖ To familiarize the students with differential calculus.
- ❖ To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- ❖ To make the students understand various techniques of integration.
- ❖ To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT I	MATRICES	9+3
Characteristic e	equation - Cayley-Hamilton theorem (without proof) - Eigenvalues and Eigenvectors of a	
real matrix - Pr	roperties of Eigenvalues and Eigenvectors – Diagonalization of matrices – Reduction of a	CO1
quadratic form	to canonical form by orthogonal transformation – Nature of quadratic forms.	CO1
UNIT II	DIFFERENTIAL CALCULUS	9+3
Limit of a funct	tion - Continuity - Derivatives - Differentiation rules - Interval of increasing and	CO2
decreasing fund	ctions – Maxima and Minima - Intervals of concavity and convexity.	COZ
UNIT III	FUNCTIONS OF SEVERAL VARIABLES	9+3
Partial differen	tiation - Homogeneous functions and Euler's theorem - Total derivatives - Change of	
variables – Jaco	obians - Partial differentiation of implicit functions - Taylor's series for functions of two	CO2
variables – Ma	xima and Minima of functions of two variables - Lagrange's method of undetermined	CO3
multipliers.		
UNIT IV	INTEGRAL CALCULUS	9+3
Definite and In	definite integrals - Substitution rule - Techniques of Integration - Integration by parts,	
Trigonometric	integrals, Trigonometric substitutions, Integration of rational functions by partial fraction,	CO4
Integration of in	rrational functions - Improper integrals.	
UNIT V	MULTIPLE INTEGRALS	9+3
Double integral	s – Change of order of integration – Double integrals in polar coordinates – Area enclosed	
by plane curve	s – Change of variables from cartesian to polar co-ordinates in double integrals – Triple	CO5
integrals – Volu	ume of solids.	
	TOTAL : 60 PER	IODS

TEXT BOOKS

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.
- 2. James Stewart, "Calculus: Early Transcendental", Cengage Learning, 7th Edition, New Delhi, 2015. [For Units I & III Sections 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.2 7.4 and 7.8].

REFERENCE BOOKS

- 1. Anton, H, Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016.
- 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. Narayanan, S. and Manicavachagom Pillai, T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007.
- 4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 5. T. Veerarajan, "Engineering Mathematics I", McGraw Hill Education; First edition 2017.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Understand the concepts of matrix algebra for analysing practical problems.

CO2 Apply differential calculus tools in solving various application problems.

CO3 Use differential calculus ideas on several variable functions.

CO4 Apply different methods of integration in solving practical problems.

CO5 Evaluate area, volume and other practical problems by multiple integrals.

	MAPPING OF COs WITH POs AND PSOs														
COs	COs PROGRAM OUTCOMES (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													PSO2	
CO1	3	3	1	-	3	-	-	-	-	-	1	2	1	1	
CO2	3	3	1	-	3	-	-	-	-	-	-	2	3	2	
CO3	3	3	1	-	3	-	-	-	-	-	1	2	3	2	
CO4	3	3	1	-	3	-	-	-	-	-	-	2	2	2	
CO5	3	3	1	-	3	-	-	-	-	-	-	2	2	1	

PH4103	ENGINEERING PHYSICS	L T 3 0	P 0	C 3						
OBJECTIVES 5 0 0										
	e the students to understand about the elastic property and stress strain diagran	n								
 To educate the students about principle of laser and its role in optical fibers and its applications as 										
	and communication.	prication	11040							
	the students about the heat transfer through solids and liquids.									
	ate the students about the quantum concepts and its use to explain black body	radiatio	n,							
	n effect, tunnelling electron microscopy and its applications.		,							
•	e the students to understand the importance of various crystal structures and v	arious								
	techniques.									
UNIT I	PROPERTIES OF MATTER			9						
	ess-strain diagram and its uses - factors affecting elastic modulus and tens	ilestren	gth –							
	and deformations – twisting couple - torsion pendulum: theory and experime		-							
	ding moment – cantilever: theory and experiment – uniform and non-uniform		_	CO1						
	eriment – Practical applications of modulus of elasticity-I-shaped girders -		•							
bending in bean		siress u	iuc to							
UNIT II	LASER AND FIBER OPTICS			9						
			:4	,						
	ation of energy levels, Einstein's A and B coefficients derivation — reso		•							
-	cation (qualitative) - Nd-YAG Laser-Semiconductor lasers: homoju									
•	— Industrial and medical applications of Laser– Fiber optics: principle			CO2						
_	ecceptance angle - types of optical fibres (material, refractive index, mod			CO2						
	optical fibers — Fabrication of Optical fiber-Double crucible method-fibre	-								
-	splacement-Industrial and medical applications of optical fiber- Endoscopy	y-Fiber	optic							
communication	·									
UNIT III	THERMAL PHYSICS			9						
	energy - thermal expansion of solids and liquids - expansion joints - bime		_							
thermal conduc	tion, convection and radiation - heat conductions in solids - thermal co	onductiv	vity –	CO3						
Rectilinear flov	v of heat- Lee's disc method: theory and experiment - conductionthroug	h comp	ound							
media (series a	nd parallel)-Radial flow of heat- thermal insulation - applications: heat	exchar	ngers,							
refrigerators, ov	en, Induction furnace and solar water heaters.									
UNIT IV	QUANTUM PHYSICS			9						
Black body rad	diation – Planck's theory (derivation) – Compton effect: theory and e	experim	ental							
verification – w	vave particle duality – electron diffraction – concept of wave function and	l its phy	sical	GO 4						
	chrödinger's wave equation – time independent and time dependentequation			CO4						
-	sional rigid box – Electron microscope-tunnelling (qualitative) - scanning	_								
	plications of electron microscopy.	C	C							
UNIT V	CRYSTAL PHYSICS			9						
	ne, polycrystalline and amorphous materials — single crystals: unit cell, cry	retalezze	teme	<u> </u>						
	, directions and planes in a crystal, Miller indices — inter-planar distances	-								
	cking factor for SC, BCC, FCC, HCP and diamond structures — Graphi									
_	ctions: point defects, line defects — Burger vectors, stacking faults – grov									
			-	CO5						
•	on and melt growth techniques- Epitaxial growth-Applications of Si	mgie Ci	rystai							
(Quantative). Ci	rystal structure determination – Laue and powder diffraction method.									
	TOT	'AL: 45	PER	IODS						

TEXT BOOKS

- 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2019.
- 2. Gaur, R.K. & Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2017.
- 3. Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.

REFERENCE BOOKS

- 1. Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'.W.H.Freeman, 2007.
- 2. Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2019.
- 3. Pandey, B.K. & Chaturvedi, S. "Engineering Physics". Cengage Learning India, 2019.

COURSE OUTCOMES

Upon completion of the course, students will be able to

Opon	completion of the course, students will be able to
CO1	Gain knowledge on the basics of properties of matter and its applications,
CO2	Acquire knowledge on the concepts of waves and optical devices and their applications in fibreoptics.
CO3	Have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers.
CO4	Get knowledge on advanced physics concepts of quantum theory and its applications intunneling microscopes, and
CO5	Understand the basics of crystals, their structures and different crystal growth techniques.

				M	APPIN	G OF	COs W	TTH P	Os AN	D PSO	s			
COs				PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													PSO2
CO1	3	3	3	3	3	2	2	1	3	2	1	2	2	2
CO2	3	3	3	2	3	2	2	1	2	2	2	1	3	3
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	3	3
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	3

CY4104	ENGINEERING CHEMISTRY	L	Т	P	C				
		3	0	0	3				
OBJECTIVES									
To applTo learn	by the principles of water characterization and treatment for industrial purpose by the principles and applications of surface chemistry and catalysis. In about Phase rule and various types of alloys.	S.							
•	ysis Various types of fuels, applications and combustion.								
To under	erstand Conventional and non-conventional energy sources and energy storage	ge de	vice.						
UNIT I	WATER AND ITS TREATMENT				9				
method – Nur embrittlement, b (carbonate, pho	vater— Types — Expression of hardness—Units—Estimation of hardness merical problems on EDTA method — Boiler troubles (scale and sluboiler corrosion, priming and foaming)—Treatment of boiler feed water—Interesphate, colloidal, sodium aluminate and calgon conditioning)—External tress, Zeolite process—Desalination of brackish water by reverse Osmosis.	ıdge nal t	, cai reatn	ustic nent	CO1				
UNIT II	SURFACE CHEMISTRY AND CATALYSIS				9				
 Surface chemistry: Types of adsorption – Adsorption of gases on solids – Adsorption of solute from solutions– Adsorption isotherms – Freundlich's adsorption isotherm–Langmuir's adsorption isotherm – Kinetics of uni-molecular surface reactions —Adsorption in chromatography – Applications of adsorption in pollution abatement using PAC. Catalysis: Catalyst – Types of catalysis – Criteria – Contact theory – Catalytic poisoning and Catalytic promoters – Industrial applications of catalysts – Catalytic convertor – Auto catalysis – Enzyme catalysis – Menten equation. 									
UNITIII	PHASE RULE AND ALLOYS				9				
	roduction – Definition of terms with examples – One component system–Wa	nter s	vste	m _					
Reduced phase silver system – Alloys : Introdu	e rule — Thermal analysis and cooling curves — Two component system — Pattinson process. ction—Definition—Properties of alloys—Significance of alloying—Functionents—Nichrome, Alnico, Stainless steel (18/8)-Heat treatment of steel—	stem ons	s—Le	ead- effect	CO3				
UNIT IV	FUELS AND COMBUSTION				9				
Fuels: Introduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coal– Analysis of coal (proximate and ultimate). – Carbonization – Manufacture of metallurgical coke (Otto Hoffmann method) – Petroleum – Cracking – Manufacture of synthetic petrol (Bergius process, Fischer Tropsch Process) – Knocking – Octane number – Diesel oil–Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alcohol and biodiesel. Combustion of fuels: Introduction – Calorific value – Higher and lower calorific values – Theoretical calculation of calorific value – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysis by Orsat Method.									
UNIT V	NON – CONVENTIONAL ENERGY SOURCES AND STORAGE DE	VIC	ES		9				
ClassificationSolar energy control	y — Fission and fusion reactions — Differences — Chain reactions — Nuclear of reactors — Light water nuclear reactor for power generation —Breed conversion — Solar cells — Wind energy — Fuel cells —Hydrogen - oxy es of batteries — Alkaline batteries — Lead - acid, Nickel — cadmium and Lith	ler r gen	eacto	or —	CO5				
	TOT	AL:	45	PER	IODS				

TEXT BOOKS

- 1. P.C.Jain, Monica Jain, Engineering Chemistry 117thEd.DhanpatRaiPub.Co., New Delhi, (2015).
- 2. S.S. Dara, S.S. Umare, A text book of Engineering Chemistry | S. Chand &Co. Ltd., New Delhi(2020).
- 3. P. Kannan, A. Ravi krishnan, Engineering Chemistry I, Sri Krishna Hi-tech Publishing Company (P) Ltd. Chennai, (2009).

REFERENCE BOOKS

- 1. B.K. Sharma Engineering chemistry | Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar Engineering Chemistry | Tata Mc Graw Hill Pub. Co. Ltd., New Delhi(2008).
- 3. Prasanta Rath- Engineering Chemistry | Cengage Learning India (P) Ltd., Delhi, (2015).
- 4. Shikha Agarwal Engineering Chemistry– Fundamentals and Applications | ,Cambridge University press, Delhi,(2015)
- 5. A. Pahari, B. Chauhan-Engineering Chemistry I, Fire wall Media., New Delhi., (2010).
- 6. Sheik Mideen., Engineering Chemistry, Airwalk Publications, Chennai (2018).

COURSE OUT COMES

Upon completion of the course, students will be able to

- Able to understand impurities in industrial water, boiler troubles, internal and external treatment methods of purifying water.
- Able to understand concepts of absorption, adsorption isotherms, application of adsorption for pollution abatement, catalysis and enzyme kinetics.
- Able to recognize significance of alloying, functions of alloying elements and types of alloys, uses of alloys

 CO3

 They should be acquainted with phase rule and reduced phase and its

 Applications in alloying.
- Able to identify various types of fuels, properties, uses and analysis of fuels. They should be able to understand combustion of fuels, method of preparation of bio-diesel, synthetic petrol.
- Able to understand conventional, non–conventional energy sources, nuclear fission and fusion, power generation by nuclear reactor, wind, solar energy and preparation, uses of various batteries.

MAPPING OF COS WITH POS AND PSOS

COs								PROG SPEC OUTCO (PSO	IFIC OMES					
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													PSO2
CO1	3	3	3	3	3	2	3	2	2	2	2	2	2	2
CO2	3	3	2	2	2	2	2	1	1	1	1	2	2	1
CO3	3	3	3	3	3	2	2	1	2	2	2	2	2	2
CO4	3	3	3	2	2	3	3	2	2	3	2	2	3	1
CO5	3	2	3	3	3	3	3	2	2	2	2	2	3	2

OE 4405		P (
GE4105	PROBLEM SOLVING AND PYTHON PROGRAMMING 3 0	0 3
OBJECTIVES	3	
To kno	w the basics of algorithmic problem solving	
To wri	te simple python programs	
❖ To dev	elop python program by using control structures and functions	
To use	python predefined data structures	
To wri	te file-based program	
UNIT I	ALGORITHMIC PROBLEM SOLVING	9
Algorithms, Bu	ailding blocks of algorithms: statements, state, control flow, functions, Notation: pseudo)
code, flow char	t, programming language, Algorithmic problem solving: Basic algorithms, flowcharts and	Ĺ
seudocode for	sequential, decision processing and iterative processing strategies, Illustrative problems:	CO
ind minimum	n a list, insert a card in a list of	
orted cards, gu	ess an integer number in a range, Towers of Hanoi.	
UNIT II	INTRODUCTION TO PYTHON	9
ython Introdu	ction, Technical Strength of Python, Python interpreter and interactive mode, Introduction	1
o colab , pych	arm and jupyter idle(s), Values and types: int, float, boolean, string, and list; Built-in data	1
ypes, variables	s, Literals, Constants, statements, Operators: Assignment, Arithmetic, Relational, Logical,	CO
Bitwise operato	ors and their precedence, Expressions, tuple	
assignment, Ac	cepting input from Console, printing statements, Simple Python programs.	
UNIT III	CONTROL FLOW, FUNCTIONS AND STRINGS	9
Conditionals: E	soolean values and operators, conditional (if), alternative (if-else), chained conditional (if-	
elif-else); Itera	tion: while, for; Loop manipulation using pass, break, continue, and else; Modules and	l.
Functions: fun	ction definition and use, flow of execution, parameters and arguments, local and global	l.
cope, return va	dues, function composition, recursion. Strings: string slices, immutability, string functions	CO
and methods, s	tring module; Illustrative programs: square root, gcd, exponentiation, sum an array of	
numbers, linea	search, binary	
search.		
UNIT IV	LISTS, TUPLES, DICTIONARIES	9
Lists: Defining	list and list slicing, list operations, list slices, list methods, list loop, list Manipulation,	,
nutability, alia	sing, cloning lists, list parameters, lists as arrays. Tuples: tuple assignment, tuple as return	l
value, tuple N	Manipulation; Dictionaries: operations and methods; advanced list processing - list	CO
comprehension	; Illustrative programs: selection sort, insertion	
sort, merge sor	, histogram.	
UNIT V	FILES, MODULES, PACKAGES	9
Files and exce	ption: Concept of Files, Text Files; File opening in various modes and closing of a file,	
Format Operato	ors, Reading from a file, Writing onto a file, File functions- open(), close(), read(),readline(),	
eadlines(),writ	e(), writelines(),tell(),seek(), Command Line arguments; Errorsand exceptions: handling	CO
exceptions; mo	dules, packages; introduction to numpy, matplotlib.	

TOTAL: 45 PERIODS

Illustrative programs: word count, copy a file.

TEXT BOOKS

- 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O₂Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)
- 2. Guido van Rossum and Fred L. Drake Jr, An Introduction to Python Revised andupdated for Python 3.2, Network Theory Ltd., 2011.
- 3. Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford UniversityPress, 2019.

REFERENCE BOOKS

- 1. John V Guttag, —Introduction to Computation and Programming Using Python_, Revised and expanded Edition, MIT Press, 2013
- 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 3. Timothy A. Budd, —Exploring Python, Mc-Graw Hill Education (India) Private Ltd., 2015.
- 4. Kenneth A. Lambert, —Fundamentals of Python: First Programsl, CENGAGE Learning, 2012.
- 5. Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- 6. Paul Gries, Jennifer Campbell and Jason Montojo, —Practical Programming: An Introduction.

COURSE OUTCOMES Upon completion of the course, students will be able to CO1 Develop algorithmic solutions to simple computational problems CO2 Develop simple console application in python CO3 Develop python program by applying control structure and decompose program into functions. CO4 Represent compound data using python lists, tuples, and dictionaries. CO5 Read and write data from/to files in Python.

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAMOUTCOMES(POs) SPEC						GRAM CIFIC COMES SOs)						
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	3	3	3	3	2	2	2	3	2	1
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	2
CO3	3	3	2	2	3	3	2	2	1	2	1	3	2	2
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	1
CO5	3	2	3	2	3	3	3	2	2	2	2	3	3	2

GE4106	ENGINEERING GRAPHICS $ \begin{array}{c ccc} \mathbf{L} & \mathbf{T} & \mathbf{P} \\ \hline 2 & 0 & 4 \end{array} $	4
OBJECTIV		<u> </u>
Engi	evelop in students, graphic skills for communication of concepts, ideas and design of neering products spose them to existing national standards related to technical drawings.	
	S AND CONVENTIONS (Not for Examination)	1
•	of graphics in engineering applications – Use of drafting instruments – BIS and specifications – Size, layout and folding of drawing sheets – Lettering and eg.	
UNIT I	PLANE CURVES AND FREEHAND SKETCHING	7+1
parabola and of square and Hand sketch	etrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, I hyperbola by eccentricity method — Construction of cycloid — construction of involutes I circle – Drawing of tangents and normal to the abovecurves. Visualization concepts and Free ing: Visualization principles –Representation of Three-Dimensional objects — Layout of tand sketching of multiple views from pictorial views of objects	CO
UNIT II	PROJECTION OF POINTS, LINES AND PLANE SURFACE	6+1
straight lines and true incl	projection- principles-Principal Planes-First angle projection-projection of points. Projection of (only First angle projections) inclined to both the principal planes - Determination of true lengths inations by rotating line method and traces Projection of planes (polygonal and circular lined to both the principal planes by rotating object method.	СО
UNIT III	PROJECTION OF SOLIDS	5+1
	simple solids like prisms, pyramids, cylinder, cone and truncated solids when theaxis is ne of the principal planes by rotating object method.	СО
UNIT IV	PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OFSURFACES	6+1
principal pla	f above solids in simple vertical position when the cutting plane is inclined to theone of the nes and perpendicular to the other — obtaining true shape of section. Development of lateral mple and sectioned solids – Prisms, pyramids cylinders and cones.	СО
UNIT V	ISOMETRIC AND PERSPECTIVE PROJECTIONS	6+1
solids - Prisn	isometric projection — isometric scale —Isometric projections of simple solids and truncated as, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - projection of simple solids-Prisms, pyramids and cylinders by visual ray method.	СО
	TOTAL: 90 PER	RIOD

Page 29 of 230

2. Venugopal K. and Prabhu Raja V., —Engineering GraphicsII, New Age International (P) Limited,

Ninth Edition 2016

2011.

REFERENCE BOOKS

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- 3. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2018.
- 4. Luzzader, Warren.J. and Duff, John M., —Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy and Vela Murali, "Engineering Graphic", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to

Сроп	completion of the course, students will be able to
CO1	Understand the fundamentals and standards of Engineering graphics
CO2	Perform freehand sketching of basic geometrical constructions and multiple views of objects
CO3	Understand the concept of orthographic projections of lines and plane surfaces
CO4	Draw the projections of section of solids and development of surfaces
CO5	Visualize and to project isometric and perspective sections of simple solids

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	ı	-	-	-	-	-	-	1	1	1	3	2	
CO2	3	3	-	-	-	-	-	-	-	1	1	1	3	2	
CO3	3	3	-	-	-	-	-	-	-	1	1	1	3	2	
CO4	3	3	-	-	-	-	-	-	-	1	1	1	3	2	
CO5	3	3	-	-	-	-	-	-	-	1	1	1	3	2	

GE4151	தமிழர் மரபு	L	Т	Р	С
	அங்குர் பர்பு	1	0	0	1
	மொழி மற்றும் இலக்கியம்				3
	ாழிக் குடும்பங்கள் திராவிட மொழிகள் - தமிழ் ஒரு செம்		πழி	து	ற் ந
	கியங்கள்- சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை- சங் இத்து அதித்தத்து அதித்து அதித்து இது அதித்து அதித்து		•_	6	٠.٠.
	நில் பகிர்தல் அறம்- திருக்குறளில் மேலாண்மைக் கருத்து கூருக்கு நக்கில் நடிகை பெனர்க நடியர்களின் நகர்கால பர்கி			•	_
	ள்- தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம- பக்தி r மற்றும் நாயன்மார்கள் - சிற்றிலக்கியங்கள் -தமி		-	க்கா ந்6	
- •	ி பற்றும் நாயலாபாரனா - செற்றுல்கள்பாகள் -தம நின் வளர்ச்சி - தமிழ் இலக்கிய வளர்ச்சியில் பாரதிய	_		•	
	் ஆகியோரின் பங்களிப்பு.	,	•	ا ا	. س
	மரபு - பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை		ர் ப	<u> </u>	3
	- ചാവ് - ചാത്വാ എംബലായാ ന്റ്രാവം എംബലായാ ചാത്വാ - ക്കൈ	- 01	יייען		3
நடுகல் முச	ு முக்காக தல் நவீன சிற்பங்கள் வரை - ஐம்பொன் சிலைகள்- பழங்குடிய	பിഒ	TÍŢ L	ı شa	'nΙ
	யாரிக்கும் கைவினைப் பொருட்கள் பொம்மைகள் - தேர் செய்		-		
•	ற்பங்கள் நாட்டுப்புறத் தெய்வங்கள்- குமரிமுனையில் திருவஎ				
. ടിതെ - இ	சைக் கருவிகள் - மிருதங்கம். பறை, வீணை, யாழ். நாதஸ்வ	ரம்			
0 . 0 .	ர் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.				
தமிழர்களில					
	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக்	Ђ.	த்து	,	
<u></u> அலகு III	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக்				3
அலகு ய தெருக்கூத்த	நாட்டுப்புறக் கலைகள் மற்றும் விர விளையாட்டுகள்: தெருக் நு, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, எ	ௐ௴	າໄວເ	TĽL	_LI
அலகு III தெருக்கூத்த தோல்பானை	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வ வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம்,	ௐ௴		TĽL	
அலகு III தெருக்கூத்த தோல்பானை	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வ வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம்,	ௐ௴	າໄວເ	TĽL	_Lţ
அலகு III தெருக்கூத்த தோல்பாகை விளையாட்	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள்.	ௐ௴	າໄວເ	TĽL	_ப்
அலகு III தெருக்கூத்த தோல்பானை விளையாட்டி அலகு IV	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள்	ஒய் தப	றில் நிழ்	 ரட்ட ர்கல	_ப் ரில்
அலகு III தெருக்கூத்த தோல்பானை விளையாட் அலகு IV தமிழகத்தில்	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் ம	ஒய் தப ற்ற	றில் நிழ் நிழ்	ரட்ட ர்கல	_ப் ரி6
அல்கு III தெருக்கூத்த தோல்பாகை விளையாட் அலகு IV தமிழகத்தில் இலக்கியத்த	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மற் தில் அகம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள்	ஒய் தப ற்ற	ில் நிழ் நிழ் பே	ரட்ட ர்க் ச	_ ப் ரி எ ந்
அலகு III தெருக்கூத்த தோல்பாசை விளையாட் அலகு IV தமிழகத்தில் இலக்கியத்த அறக்கோட்ட	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மத் தில் அகம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள் பாடு -சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும்	ஒய் தப ற்ற	ில் நிழ் நிழ் பே	ரட்ட ர்க் ச	_ ப் ரில் நி
அல்கு III தெருக்கூத்த தோல்பானை விளையாட் அலக IV தமிழகத்தின் இலக்கியத்த அறக்கோட்ட நகரங்களும்	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள் பாடு -சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் துறை முகங்களும் - சங்ககாலத்தில் ஏற்றுமதி மற்றும்	ஒய் தப ற்ற	ில் நிழ் நிழ் பே	ரட்ட ர்க் ச	_ ப் ரில் நி
அல்கு III தெருக்கூத்த தோல்பானை விளையாட் அலகு IV தமிழகத்தின் இலக்கியத்த அறக்கோட்ட நகரங்களும் இறக்குமதி	நாட்டுப்புறக் கலைகள் மற்றும் விர விளையாட்டுகள்: தெருக்கு, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மறில் அகம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள் பாடு -சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் துறை முகங்களும் - சங்ககாலத்தில் ஏற்றுமதி மற்றும் -கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி	ஒய் தப ற்ற	ில் நிழ் நிழ் பே	ரட்ட ர்க் ச	_ப் ரில் நி
அலகு III தெருக்கூத்த தோல்பானை விளையாட் அலகு IV தமிழகத்தின் இலக்கியத்த அறக்கோட்ப தகரங்களும் இறக்குமதி	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மத் தல் அகம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள் பாடு -சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் துறை முகங்களும் - சங்ககாலத்தில் ஏற்றுமதி மற்றும் -கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு	ஒய் தப ற்ற ர	பில் மே சா	ரட்ட ர்க்க சாற்ர	_ப் ரில் நி
அலகு III தெருக்கூத்த தோல்பானை விளையாட்டி அலகு IV தமிழகத்தின் இலக்கியத்த அறக்கோட்ட நகரங்களும் இறக்குமதி அலகு V இந்திய வி	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக்கு, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மறில் அகம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள் பாடு -சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் துறை முகங்களும் - சங்ககாலத்தில் ஏற்றுமதி மற்றும் -கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு	ஒய் தப ற்ற ர	பகுத் சாச்	ரட்ட ர்க்க சராற்ற பக்க	_ ப் ரில் நிப் நிப்
அலகு III தெருக்கூத்த தோல்பானை விளையாட்டி அலகு IV தமிழகத்தின் இலக்கியத்தி அறக்கோட்ட நகரங்களும் இறக்குமதி அலகு V இந்திய வி	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக்கு, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மதில் அகம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள் பாடு -சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் துறை முகங்களும் - சங்ககாலத்தில் ஏற்றுமதி மற்றும் -கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு டுதலைப்போரில் தமிழர்களின் பங்கு - இந்தியாவின் பிறபாட்டின் தாக்கம்- சயமரியாதை இயக்கம் - இந்திய மருத்துவா	ஒய் தப ற்ற ர	பகுத் சாச்	ரட்ட ர்க்க சராற்ற பக்க	 ரிம் நி நால
அலகு III தெருக்கூத்த தோல்பானை விளையாட் அலகு IV தமிழகத்தின் இலக்கியத்த அறக்கோட்ட நகரங்களும் இறக்குமதி அலக V இந்திய வி தமிழ்ப் பண் சித்த மருத்த	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் த தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மு தில் அகம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள் பாடு -சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் துறை முகங்களும் - சங்ககாலத்தில் ஏற்றுமதி மற்றும் -கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு டுதலைப்போரில் தமிழர்களின் பங்கு - இந்தியாவின் பிற பாட்டின் தாக்கம்- சுயமரியாதை இயக்கம் - இந்திய மருத்துவ துவத்தின் பங்கு - கல்வெட்டுகள், கையெழுத்துப்படிகள் தமிழ்	ஒய் தப ற்ற ர	பகுத் சாச்	ரட்ட ர்க்க சராற்ற பக்க	_ ப் ரில் நிப் நிப்
அலகு III தெருக்கூத்த தோல்பானை விளையாட் அலகு IV தமிழகத்தின் இலக்கியத்த அறக்கோட்ட நகரங்களும் இறக்குமதி அலக V இந்திய வி தமிழ்ப் பண் சித்த மருத்த	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக்கு, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மதில் அகம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள் பாடு -சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் துறை முகங்களும் - சங்ககாலத்தில் ஏற்றுமதி மற்றும் -கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு டுதலைப்போரில் தமிழர்களின் பங்கு - இந்தியாவின் பிறபாட்டின் தாக்கம்- சயமரியாதை இயக்கம் - இந்திய மருத்துவா	ஒய் தப ற்ற ர	பகுத் சாச்	ரட்ட ர்க்க சராற்ற பக்க	_ப் ரில் நி
அலகு III தெருக்கூத்த தோல்பானை விளையாட் அலகு IV தமிழகத்தின் இலக்கியத்த அறக்கோட்ட நகரங்களும் இறக்குமதி அலக V இந்திய வி தமிழ்ப் பண் சித்த மருத்த	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக் து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, வக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், டுகள். தமிழர்களின் திணைக் கோட்பாடுகள் த தாவரங்களும், விலங்குகளும் -தொல்காப்பியம் மு தில் அகம் மற்றும் புறக் கோட்பாடுகள் -தமிழர்கள் பாடு -சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் துறை முகங்களும் - சங்ககாலத்தில் ஏற்றுமதி மற்றும் -கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு டுதலைப்போரில் தமிழர்களின் பங்கு - இந்தியாவின் பிற பாட்டின் தாக்கம்- சுயமரியாதை இயக்கம் - இந்திய மருத்துவ துவத்தின் பங்கு - கல்வெட்டுகள், கையெழுத்துப்படிகள் தமிழ்	ஒய் தப ற்ற ர ர ர -	பகுத் தில்	ரட்ட ர்க்க	

TEXT-CUM REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித்தமிழ் முனைவர் இல சுந்தரம் (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book

		L	T	P	C						
GE4151	HERITAGE OF TAMILS	1	0	0	1						
UNIT I LANGUAGE AND LITERATURE											
UNIT I LANGUAGE AND LITERATURE Language Families in India - Dravidian Languages - Tamil as a Classical Language - Classical Literature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and											

Language Families in India - Dravidian Languages – Tamil as a Classical Language – Classical Literature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making - - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT III FOLK AND MARTIAL ARTS 3

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS 3

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIANCULTURE 3

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India
– Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions &
Manuscripts – Print History of Tamil Books.

TOTAL: 15 PERIODS

3

TEXT-CUM REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித்தமிழ் முனைவர் இல சுந்தரம் (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)

- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation,

Tamil Nadu)

- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book

GE4107	PYTHON PROGRAMMING LABORATORY	L	T	P	(
OBJECTIV	DC	0	0	4	
	vrite, test, and debug simple Python programs.				
	mplement Python programs with conditionals and loops.				
	functions for structuring Python programs.				
	resent compound data using Python lists, tuples, and dictionaries.				
_	and write data from/to files in Python.				
LIST OF EX	XPERIMENTS				
1. Write	an algorithm and draw flowchart illustrating mail merge concept.				
2. Write	an algorithm, draw flowchart and write pseudo code for a real life or scientific orte	chnic	cal		
prob	lems				$\mathbf{\alpha}$
3. Scie	ntific problem-solving using decision making and looping.			$\frac{1}{C}$	U
•	Armstrong number, palindrome of a number, Perfect number.				
4. Sim	ble programming for one dimensional and two-dimensional arrays.				
	Transpose, addition, multiplication, scalar, determinant of a matrix				
5. Progra	am to explore string functions and recursive functions.				
6. Utili	zing Functions' in Python				
	Find mean, median, mode for the given set of numbers in a list.				
	• Write a function dups to find all duplicates in the list.			C	0
	• Write a function unique to find all the unique elements of a list.				
•	• Write function to compute gcd, lcm of two numbers.				
7. Demo	nstrate the use of Dictionaries and tuples with sample programs.				
8. Imple	ment Searching Operations: Linear and Binary Search.				
9. To so	ort the _n' numbers using: Selection, Merge sort and Insertion Sort.				
	the most frequent words in a text of file using command line arguments.				
	onstrate Exceptions in Python.				o
	ications: Implementing GUI using turtle, pygame.				
	TOTA	L: 6	0 PI	ERIC	D
REFEREN	CE BOOKS				
1. Reei 2019	ma Thareja, Python Programming: Using Problem Solving Approach, Oxford University	ersity	Pres	SS,	
	n B. Downey, — Think Python: How to Think Like a Computer Scientist, Second ated for Python 3, Shroff/O'Reilly Publishers, 2016.	l Edit	tion,		
2 61					

4. David M.Baezly — Python Essential Reference II. Addison-Wesley Professional; Fourth edition, 2009.

3. Shroff —Learning Python: Powerful Object-Oriented Programming; Fifth edition, 2013.

5. David M. Baezly — Python Cookbook | O'Reilly Media; Third edition (June 1, 2013)

WEB REFERENCES						
1.	1. http://www.edx.org					
COUF	COURSE OUTCOMES					
Upon	Upon completion of the course, students will be able to					
CO1	Develop simple console applications through python with control structure and functions					
CO2	Use python built in data structures like lists, tuples, and dictionaries for representing compound data.					
CO3	Read and write data from / to files in Python and applications of python.					

MAPPING OF COs WITH POS AND PSOS

COs	PROGRAMOUTCOMES(POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	3	ı	-	-	-	2	2	3	2	1
CO2	3	2	3	3	2	-	-	_	-	2	2	3	2	2
CO3	3	3	2	2	3	-	-	_	-	2	1	3	2	2

BS4108

PHYSICS AND CHEMISTRY LABORATORY

L	T	P	C
0	0	4	2

TOTAL: 60 PERIODS

OBJECTIVES

The students will be trained to perform experiments to study the following.

- The Properties of Matter
- ❖ The Optical properties, Characteristics of Lasers & Optical Fibre
- ❖ Electrical & Thermal properties of Materials
- ❖ Enable the students to enhance accuracy in experimental measurements.
- ❖ To make the student to acquire practical skills in the determination of water quality parameters through volumetric analysis
- ❖ Instrumental method of analysis such as potentiometry, conductometry and PH metry

LIST OF EXPERIMENTS – PHYSICS

(A minimum of 5 experiments to be performed from the given list)

(17 minimum of 2 emperiments to be performed from the grade mate)	
 Determination of Young's modulus of the material of the given beam by Non-uniform bending method. Determination of Young's modulus of the material of the given beam by uniform bending method. Determination of rigidity modulus of the material of the given wire using torsion pendulum. 	CO1
 Determination of wavelength of mercury spectra using Spectrometer and grating. Determination of dispersive power of prism using Spectrometer. (a) Determination of wavelength and particle size using a laser. (b) Determination of Numerical and acceptance angle of an optical fibre. Determination of energy band gap of the semiconductor. Determination of coefficient of thermal conductivity of the given bad conductor using Lee's disc. Determination of Hysteresis loss in a ferromagnetic materials. 	CO2
DEMONSTRATION EXPERIMENT	
1. Determination of thickness of a thin sheet / wire – Air wedge method	CO1
LIST OF EXPERIMENTS – CHEMISTRY (A minimum of 6 experiments to be performed from the given list)	
 Determination of chloride content of water sample by argentometric method. Estimation of copper content of the given solution by Iodometry. Determination of strength of given hydrochloric acid using pH meter. 	CO3
 4. Determination of strength of acids in a mixture of acids using conductivity meter. 5. Estimation of iron content of the given solution using potentiometer. 6. Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer. 7. Conductometric titration of strong acid vs strong base. 	CO4
8. Estimation of HCl using Na ₂ CO ₃ as primary standard and determination of alkalinity in water sample.	
9. Determination of total, temporary & permanent hardness of water by EDTA method.	CO5
10. Determination of DO content of water sample by Winkler's method.	1
DEMONSTRATION EXPERIMENTS	
1. Estimation of iron content of the water sample using spectrophotometer (1,10-Phenanthroline / thiocyanate method).	CO3
2. Estimation of sodium and potassium present in water using flame photometer.	CO5

COUI	RSE OUTCOMES
Upon	completion of the course, students will be able to
	Able to understand the concept about the basic properties of matter like stress, strain and typesof moduli.
CO1	Able to understand the concept of optics like reflection, refraction, diffraction by using spectrometer
	grating.
	Able to understand the thermal properties of solids, specific heat and some models for specificheat
CO2	calculation.
	Able to understand the working principle of laser components and working of different lasersystem.
	Able to understand the phenomenon of light, applications of fibre optics.
CO3	Able to understand the concept of determining the pH value by using pH meter.
	Able to understand the concept about the amount of chloride present in the given sample ofwater.
	Able to understand the concept of determining the emf values by using potentiometer
CO4	Able to understand the concept about the measurement of conductance of strong acid andstrong base by
	using conductivity meter.
	Able to understand the amount of dissolved oxygen present in the water.
CO ₅	Able to understand the concept of estimation of hardness of water by EDTA method. Able to
	understand the concept of estimation of alkalinity in water sample.

MAPPING OF COs WITH POS AND PSOS

COs					PR	OGRA	M OUT	ГСОМ	ES (PC) s)			SPE OUT	GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	2	2	1	1	1	3	2	2	3	2	2
CO2	3	1	2	1	1	1	1	1	2	1	1	2	2	2
СОЗ	3	1	2	1	2	2	2	1	2	1	1	1	2	1
CO4	3	2	1	1	2	1	1	1	2	1	1	2	2	1
CO5	3	2	1	1	1	2	2	1	2	1	2	1	2	2

TTC/201		L	T	P	C
HS4201	PROFESSIONAL ENGLISH	3	0	3	
OBJECTIVE	S				
To en	gage learners in meaningful language activities to improve their LSRW skills				
To en	hance learners' awareness of general rules of writing for a specific purpose				
❖ To de	velop analytical thinking skills for problem solving in communicative contexts				
❖ To he	lp learners understand the purpose, audience, contexts of different types of writing				
❖ To de	monstrate an understanding of job applications and interviews for internship and pla	aceı	nen	ts	
UNIT I	MAKING COMPARISONS				9
illing a Grapl Persuasive Sp Professional	valuative Listening: Advertisements, Product Descriptions – Audio / video – List nic Organiser – Choosing a product or service by comparison; Speaking – Marketing beech Techniques; Reading – Reading advertisements, user manuals, brochures; emails, Email etiquette – Compare and Contrast Essay - Writing definitions; Gphrases; Vocabulary – Contextual meaning of words.	a p	rodu iting	ict, g –	CO
UNIT II	EXPRESSING CASUAL RELATIONS IN SPEAKING AND WRITING				9
_	istening to longer technical talks and completing gap filling exercises – Listening to				
Describing a onger technicate on the contract of the contract	rom podcasts – Listening to process/event descriptions to identify cause & effects – and discussing the reasons of accidents or disasters based on news reports; Reading cal texts – Cause and Effect Essays – Letters/ emails of complaint; Writing - Writing responses to complaints; Grammar – Impersonal passive, Infinitive and Word Formation (Noun-Verb-Adj-Adv).	– R – P	eadi urpo	ing ose	CC
UNIT III	PROBLEM SOLVING				9
suggesting so Reading – Ca Checklists, Pa	Listening to / Watching movie scenes/ documentaries depicting a technical prollutions; Speaking – Group Discussion (based on case studies) – techniques and ase Studies, excerpts from literary texts, news reports etc; Writing – Letter to tooblem solution essay – Argumentative Essay; Grammar – Error correction – If cocabulary - Compound Words, Sentence Completion.	stra he	itegi Edit	es, or,	CC
UNIT IV	REPORTING OF EVENTS AND RESEARCH				9
summarising;	Listening comprehension based on news reports and documentaries – paraphr Speaking – Interviewing, presenting an oral report, Mini presentations on selections are selected to the selection of t	ect	topi	cs;	

TOTAL: 45 PERIODS

9

CO5

Listening – Listening to technical talks, Presentations, Formal job interviews, analysis of the interview performance; Speaking - Participating in a Role play, (interview/telephone interview), virtual interviews, making presentations with visual aids; Reading - Company profiles, Statement of Purpose (SOP), an excerpt

of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar

PRESENTING IDEAS OR INFORMATION COGENTLY

– Numerical adjectives, Relative Clauses; Vocabulary – Easily confused words.

Conjunctions – use of prepositions.

UNIT V

TEXT BOOKS

- 1. English for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd. Department of English, Anna University.
- 2. English for Science & Technology Cambridge University Press 2021. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.
- 3. Raman. Meenakshi, Sharma. Sangeeta (2022). Technical Communication. Oxford University Press. New Delhi.

REFERENCE BOOKS

- 1. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, New Delhi.
- 2. Learning to Communicate Dr. V. Chellammal. Allied Publishers, New Delhi, 2003
- 3. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 4. Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi.
- 5. Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford University Press. New Delhi.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To compare and contrast products and ideas in technical texts.
CO2	To identify cause and effects in events, industrial processes through technical texts.
CO3	To analyse problems in order to arrive at feasible solutions and communicate them orally and in the written format.
CO4	To report events and the processes of technical and industrial nature.
CO5	To present opinions in a planned and logical manner, and draft effective resumes in context of job search.

MAPPING OF COS WITH POS

Cos				PI	ROGRA	AM OU	TCOM	ES (PC	O s)				SPEC OUT C	GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	1	1	-	1	1	-	1	2	2	2	2	2
CO2	-	-	1	1	-	1	1	-	1	2	2	2	2	2
CO3	-	-	2	1	-	-	1	-	1	3	2	2	2	2
CO4	-	-	2	1	ı	2	2	1	2	3	2	3	2	2
CO5	-	-	1	2	ı	2	2	1	1	3	2	3	1	1

N/ A 4202	STATISTICS AND NUMERICAL METHODS	L	T	P	C
MA4202		3	1	0	4

OBJECTIVES

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- ❖ To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- ❖ To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I	TESTING OF HYPOTHESIS	9+3
	butions – Tests for single mean, proportion and difference of means (Large and small samples) – e variance and equality of variances – Chi-square test for goodness of fit – Independence of	CO1
UNIT II	DESIGN OF EXPERIMENTS	9+3
-	wo-way classifications – Completely randomized design – Randomized block design – Latin 2^2 factorial design.	CO2
UNIT III	SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS	9+3
of equations –	ebraic and transcendental equations by Newton Raphson method – Solution of linear system Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss ass Seidel – Eigenvalue of a matrix by Power method.	CO3
UNIT IV	INTERPOLATION AND NUMERICAL CALCULUS	9+3
derivatives us	 Lagrange's, Newton's forward and backward Interpolations – Approximation of sing interpolation polynomials – Numerical single and double integrations using and Simpson's 1/3 rules. 	CO4
UNIT V	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS	9+3
Single step me	thods: Taylor's series method – Euler's method - Modified Euler's method – Fourth order	
	nethod for solving first order differential equations - Multi step method: Milne's predictor od for solving first order differential equations.	CO5
	TOTAL: 60 PER	IODS

TEXT BOOKS

- 1. Grewal. B.S. and Grewal. J.S., "Numerical Methods in Engineering and Science", 10th Edition, Khanna Publishers, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.
- 3. Kandasamy P., Thilagavathi K and Gunavathi K., "Statistical and numerical methods", S. Chand & Company Ltd. Sultan Chand & Company, 2001.

REFERENCE BOOKS

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2006.
- 4. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", Tata McGraw Hill Edition, 4th Edition, 2012.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 9th Edition, Pearson Education, Asia, 2010.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Apply the concept of testing of hypothesis for small and large samples in real life problems.
CO2	Apply the basic concepts of classifications of design of experiments in the field of agriculture.
CO3	Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
CO4	Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
CO5	Solve the ordinary differential equations with initial conditions by using certain techniques with engineering applications.

				MA	APPIN	G OF	COs V	VITH	POs A	ND PS	Os			
COs		PROGRAM OUTCOMES (POs)										PROGRAM SPECIFIC OUTCOMES (PSOs)		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2
CO1	3	3	3	1	2	3	-	-	3	2	3	3	2	1
CO2	3	3	3	2	2	1	-	-	-	-	1	2	1	0
CO3	3	3	3	2	2	1	-	-	-	-	1	2	2	1
CO4	3	3	3	2	2	1	-	-	-	-	1	2	1	0
CO5	3	3	3	2	1	1	-	-	-	-	1	2	1	0

PH4253 MATERIALS SCIENCE L T	P	C
3 0	0	3
OBJECTIVES		
❖ To introduce the essential principles of materials science for mechanical and related engineer applications.	ring	
UNIT I PHASE DIAGRAMS		9
Solid solutions - Hume Rothery's rules - the phase rule - single component system - one- component s	ysten	n
of iron - binary phase diagrams - isomorphous systems - the tie-line rule -the lever rule - applicat	ion to	
isomorphous system - eutectic phase diagram - peritectic phase diagram - other invariant reactions	- fre	e CO
energy composition curves for binary systems - microstructural change during cooling.		
UNIT II FERROUS ALLOYS		9
The iron-carbon equilibrium diagram - phases, invariant reactions - microstructure of slowly cooled s	teels	-
eutectoid steel, hypo and hypereutectoid steels - effect of alloying elements on the Fe-C system - diffus	sion i	n
solids - Fick's laws of diffusion- mechanisms of diffusion, temperature dependence of diffusivity - stead	ly an	d CO
non-steady state diffusion - factors that influence diffusion - Properties and applications of copper	alloys	,
aluminium alloys and titanium alloys. Phase transformations - T-T-T-diagram for eutectoid steel - pe	arlitic	; ,
baintic and martensitic transformations - tempering of martensite		
UNIT III MECHANICAL PROPERTIES		9
Tensile test - plastic deformation mechanisms - slip and twinning - role of dislocations in slip - strengtl	nenin	g
methods - strain hardening - refinement of the grain size - solid solution strengthening - precip	itatio	n
hardening - creep resistance - creep curves - mechanisms of creep- creep-resistant materials - fractur	e - th	e CO
Griffith criterion - critical stress intensity factor and its determination- Fatigue failure - fatigue tests - ha	rdnes	s
- Rockwell and Brinell hardness - Knoop and Vickers micro hardness. Steps in materials selection pr	ocess	,
Factors influencing materials selection, Case studies.		
UNIT IV MAGNETIC, DIELECTRIC AND SUPERCONDUCTING MATERIALS		9
Ferromagnetism - domain theory - types of energy - hysteresis - hard and soft magnetic materials - fer	rites	-
dielectric materials - types of polarization - Langevin - Debye equation - frequency effects on polariz	ation	- co
dielectric breakdown - insulating materials - Ferroelectric materials - superconducting materials and	l thei	
properties.		
UNIT V NEW MATERIALS		9
Historical perspective- Material properties and qualities, Classification of Materials - Ceramics		
- types and applications - composites: classification, role of matrix and reinforcement, processing o	f fibr	e
reinforced plastics - metallic glasses: types , glass forming ability of alloys, melt spinning pr	ocess	, co
applications - shape memory alloys: phases, shape memory effect, pseudo elastic effect, NiTi	alloy	,
applications – nano materials: preparation (bottom up and top down approaches), properties and applications	ations	
		ı

TEXT BOOKS

- 1. Balasubramaniam, R. Callister's Materials Science and Engineering. Wiley India Pvt. Ltd., 2014.
- 2. Raghavan, V. Physical Metallurgy: Principles and Practice. PHI Learning, 2015.
- 3. Raghavan, V. Materials Science and Engineering: A First course. PHI Learning, 2015.

REFERENCE BOOKS

- 1. Askeland, D. Materials Science and Engineering. Brooks/Cole, 2010.
- 2. Smith, W.F., Hashemi, J. & Prakash, R. Materials Science and Engineering. Tata McGraw Hill Education Pvt. Ltd., 2014.
- 3. Wahab, M.A. Solid State Physics: Structure and Properties of Materials. Narosa Publishing House, 2009.

COURSE OUTCOMES

Upon c	ompletion of the course, students will be able to
CO1	Understand the various forms of solid solutions, equilibrium, and different phase diagrams and their applications in materials system.
CO2	Understand the Fe - Fe ₃ C phase diagram, invariant reactions, diffusion of solids, mechanism, factors that influence diffusion, properties of copper, aluminium and titanium alloys and various microstructures of ferrous and their alloys.
CO3	Understand the mechanical properties of materials, measurement and materials selections process and their case studies.
CO4	Understand the properties of different types of magnetic materials - Ferromagnetic, Anti ferro magnetic, Ferrites. Understand the phenomenon of superconductivity, and its properties of superconductors and the properties of dielectric materials, various types of polarization and loss in dielectric materials.
CO5	Understand the importance of various newer materials, like ceramics, composite materials, metallic glass, SMA, Nano materials. Their historical perspective, properties, classification and apply to develop alloys of various composition with desirable properties.

MAPPING OF COs WITH POs AND PSOs

COs	PROGRAM OUTCOMES (POs)					PROGRAM OUTCOMES (POs)												PROCED AND OUTCOMES (PO.)			SPE OUT	GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2								
CO1	-	-	-	-	-	3	3	-	-	-	-	3	3	3								
CO2	-	-	-	-	-	3	3	-	-	-	-	3	3	3								
CO3	-	-	-	-	-	3	3	-	-	-	-	3	3	3								
CO4	-	-	-	-	-	3	3	-	-	-	-	3	3	3								
CO5	-	-	-	-	-	3	3	-	_	-	-	3	3	3								

GE4204

ENVIRONMENTAL SCIENCE AND ENGINEERING

L	T	P	C
3	0	0	3

OBJECTIVES

- ❖ To study the inter relationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- ❖ To find and implement scientific, technological, economic and political solutions to environmental problems.
- ❖ To apply the integrated themes and biodiversity, natural resources, pollution control and waste management.
- To analyse the dynamic processes and understand the features of the earth's interior and surface.

UNIT I ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY

9

Definition, scope and importance of environment – Need for public awareness – Role of Individual in Environmental protection – Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Foodchains, food webs and ecological pyramids – Ecological succession – Types, characteristic features, structure and function of forest, grass land, desert and aquatic (ponds, lakes, rivers, oceans, estuaries) ecosystem.

CO1

Biodiversity – Definition – Genetic, species and ecosystem diversity – Value of biodiversity – Consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega diversity nation – Hot spots of biodiversity – Threats to biodiversity – Habitat loss, poaching of wild life, human-wildlife conflicts – Wildlife protection act and forest conservation act – Endangered and endemic species – Conservation of biodiversity – In-situ and ex-situ conservation of biodiversity.

UNIT II ENVIRONMENTAL POLLUTION

9

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: causes, effects and control measures of municipal solidwastes – Problems of ewaste – Role of an individual in prevention of pollution – Pollution casestudies – Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

CO₂

UNIT III NATURAL RESOURCES

9

Forest resources: Uses and over-exploitation — Deforestation — Case studies — Timber extraction, mining, dams and their effects on forests and tribal people — Water resources — Use and overutilization of surface and ground water, floods, drought, conflicts over water — Dams:benefits and problems — Mineral resources: Uses and exploitation — Environmental effects of extracting and using mineral resources— Food resources: World food problems

Changes caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer – pesticide problems, water logging, salinity – Energy resources: Growing energy needs – Renewable and non-renewable energy sources – Use of alternate energy sources— Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain – case studies

CO3

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

9

From unsustainable to sustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation — Consumerism and waste products — Principles of Green Chemistry — Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Preventionand control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcementmachinery involved in environmental legislation – Central and state pollution control boards – National Green Tribunal – Public awareness.

UNIT V	HUMAN POPULATION AND THE ENVIRONMENT	9	
Environment a	women and child wertare – Role of information technology in environment and	CO5	

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Benny Joseph, Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).
- 2. Gilbert M.Masters, Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004).
- 3. Dr. A. Sheik Mideen and S.Izzat Fathima, Environmental Science and Engineering, Airwalk Publications, Chennai, (2018).

REFERENCE BOOKS

- 1. Dharmendra S. Sengar, Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).
- 2. Erach Bharucha, "Textbook of Environmental Studies", Universities Press (I) Pvt, Ltd, Hydrabad, (2015).
- 3. G. Tyler Miller, Scott E. Spoolman, "Environmental Science", Cengage Learning India Pvt.Ltd, Delhi, (2014).
- 4. R. Rajagopalan, Environmental Studies-From Crisis to Cure', Oxford University Press, (2005).
- 5. Anubha Kaushik, C.P. Kaushik, "Perspectives in Environmental Studies", New AgeInternational Pvt. Ltd, New Delhi, (2004).
- 6. Frank R. Spellman, "Handbook of Environmental Engineering", CRC Press, (2015).

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To obtain knowledge about environment, ecosystems and biodiversity.
CO2	To take measures to control environmental pollution.
CO3	To gain knowledge about natural resources and energy sources.
CO4	To find and implement scientific, technological, economic and political solutions to environmental problems.
CO5	To understand the impact of environment on human population.

MAPPING OF COS WITH POS AND PSOS

CO		PROGRAMOUTCOMES(POs)												GRAM CIFIC COMES (Os)
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	3	3	3	3	2	2	2	3	2	1
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	2
CO3	3	3	2	2	3	3	2	2	1	2	1	3	2	2
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	1
CO5	3	2	3	2	3	3	3	2	2	2	2	3	3	2

BE4251

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

L	T	P	C
3	0	0	3

TOTAL: 45 PERIODS

OBJECTIVES

- ❖ To introduce the basics of electric circuits and analysis
- ❖ To impart knowledge in the basics of working principles and application of electrical machines
- ❖ To introduce analog devices and their characteristics
- ❖ To educate on the fundamental concepts of digital electronics
- ❖ To introduce the functional elements and working of measuring instruments

UNIT I	ELECTRICAL CIRCUITS	9
-Independent and sources only (Ste Value, Instantand	cuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm's Law - Kirchhoff's Laws d Dependent Sources – Simple problems- Nodal Analysis, Mesh analysis with Independent eady state). Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS eous power, real power, reactive power and apparent power, power factor – Steady state circuits (Simple problems only).	
UNIT II	ELECTRICAL MACHINES	9
Applications. Wo	Working principle- DC Separately and Self excited Generators, EMF equation, Types and orking Principle of DC motors, Torque Equation, Types and Applications. Construction, e and Applications of Transformer, Three phase Alternator, Synchronous motor and Three Motor.	CO2
UNIT III	ANALOG ELECTRONICS	9
Junction Diodes,	r and Capacitor in Electronic Circuits- Semiconductor Materials: Silicon &Germanium – PN Zener Diode –Characteristics Applications – Bipolar Junction Transistor-Biasing, JFET, SCR, – Types, I-V Characteristics and Applications, Rectifier and Inverters	
UNIT IV	DIGITAL ELECTRONICS	9
	er systems, binary codes, error detection and correction codes, Combinational logic - logic functions-SOP and POS forms, K-map representations - minimization using K maps s only)	CO4
UNIT V	MEASUREMENTS & INSTRUMENTATION	9
Moving Iron met	nts of an instrument, Standards and calibration, Operating Principle, types - Moving Coil and ers, Measurement of three phase power, Energy Meter, Instrument Transformers- CT and PT, ram- Data acquisition.	

TEXT BOOKS

- 1. D.P. Kotharti and I.J Nagarath, Basic Electrical and Electronics Engineering, McGraw Hill, 2016, Third Edition.
- S.K.Bhattacharya "Basic Electrical and Electronics Engineering", Pearson Education, Second Edition, 2017.
- 3. Sedha R.S., "A textbook book of Applied Electronics", S. Chand & Co., 2008
- 4. James A .Svoboda, Richard C. Dorf, "Dorf's Introduction to Electric Circuits", Wiley,
- 5. A.K. Sawhney, PuneetSawhney 'A Course in Electrical & Electronic Measurements & Instrumentation', DhanpatRai and Co, 2015.

REFERENCE BOOKS

- 1. Kothari DP and I.J Nagrath, "Basic Electrical Engineering", Fourth Edition, McGraw Hill Education, 2019
- 2. Thomas L. Floyd, 'Digital Fundamentals', 11th Edition, Pearson Education, 2017.
- 3. Albert Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7th edition, 2017.
- 4. MahmoodNahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, 2002.
- 5. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010

COURSE OUTCOMES

Upon completion of the course, students will be able to

CPon	completion of the course, students will be use to
CO1	Compute the electric circuit parameters for simple problems
CO2	Explain the working principle and applications of electrical machines
CO3	Analyze the characteristics of analog electronic devices
CO4	Explain the basic concepts of digital electronics
CO5	Explain the operating principles of measuring instruments

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	3	3	-	-	-	-	-	-	-	-	2	3	3		
CO2	3	3	3	-	-	-	-	-	-	-	-	2	3	3		
CO3	3	3	3	-	-	-	-	-	-	-	-	2	3	3		
CO4	3	3	3	-	-	-	-	-	-	-	-	2	3	3		
CO5	3	3	3	-	-	-	-	-	-		-	2	3	3		

GE4206	ENGINEERING MECHANICS	L	T	P	C
GE4200	ENGINEERING MECHANICS	3	2	0	4
	ES o develop capacity to predict the effect of force and motion in the course of carry anctions of engineering.	ying (out t	he d	esign

fu	nctions of engineering.						
UNIT I	STATICS OF PARTICLES	9+6					
triangular Lav subtraction, de particle – Forc	Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces – Vectorial representation of forces – Vector operations of forces - additions, subtraction, dot product, cross product – Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility.						
UNIT II	EQUILIBRIUM OF RIGID BODIES	9+6					
Couples – Mocouples – Scal	gram – Types of supports –Action and reaction forces – stable equilibrium – Moments and ment of a force about a point and about an axis – Vectorial representation of moments and ar components of a moment – Varignon's theorem – Single equivalent force -Equilibrium of n two dimensions – Equilibrium of Rigid bodies in three dimensions.	CO2					
UNIT III	PROPERTIES OF SURFACES AND SOLIDS	9+6					
integration – T Pappus - Area T section, I se perpendicular moment of in	centre of mass – Centroids of lines and areas - Rectangular, circular, triangular areas by section, I section, - Angle section, Hollow section by using standard formula –Theorems of moments of inertia of plane areas – Rectangular, circular, triangular areas by integration – ction, Angle section, Hollow section by using standard formula –Parallel axis theorem and axis theorem – Principal moments of inertia of plane areas – Principal axes of inertia-Mass ertia –mass moment of inertia for prismatic, cylindrical and spherical solids from first lation to area moments of inertia.	CO3					
UNIT IV	DYNAMICS OF PARTICLES AND RIGID BODIES	9+6					
	s, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion - s of motion – Work Energy Equation.	CO4					
UNIT V	FRICTION AND RIGID BODY DYNAMICS	9+6					
wedge friction	 Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – motion of simple rigid bodies such as cylinder, disc/wheel and sphere. 	CO5					

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 8 Edition, Tata McGraw-Hill Publishing company, New Delhi (2004).
- 2. Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education 2010.

REFERENCE BOOKS

- 1. Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International (P) Limited Publishers, 1998.
- 2. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics Statics and Dynamics", 4 Edition, Pearson Education 2006.
- 3. Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics Volume 1, Dynamics- Volume 2", Third Edition, John Wiley & Sons, 1993.
- 4. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3 Edition, Vikas Publishing House Pvt. Ltd., 2005.

COURSE OUTCOMES

Upon completion of the course, students will be able to

Upon	Upon completion of the course, students will be able to						
CO1	Illustrate the vectorial and scalar representation of forces and moments						
CO2	Analyse the rigid body in equilibrium						
CO3	Evaluate the properties of surfaces and solids						
CO4	Calculate dynamic forces exerted in rigid body						
CO5	Determine the friction and the effects by the laws of friction						

MAPPING OF COs WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)										SPEC OUTC	GRAM CIFIC OMES GOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	-	-	-	-	-	3	3	3	3	3	3
CO2	3	3	3	-	-	-	-	-	3	3	3	3	3	3
CO3	3	3	3	-	-	-	-	-	3	3	3	3	3	3
CO4	3	3	3	-	-	-	-	-	3	3	3	3	3	3
CO5	3	3	3	-	-	-	-	-	3	3	3	3	3	3

CE 4251		L	T	P	С
GE4251	தமிழரும் தொழில் நுட்பமும்				1

அலகு ၊ நெசவு மற்றும் பானைத்தொழில்நுட்பம்

சங்க காலத்தில் நெசவுத் தொழில் - பானைத் தொழில்நுட்பம் - கருப்பு சிவப்பு பாண்டங்கள்-பாண்டங்களில் கீறல் குறியீடுகள்.

அலகு 🛮 வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்

3

சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு -சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல்லும் -சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் -மாமல்லபுரச் சிற்பங்களும், கோவில்களும் - சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் - நாயக்கர் காலக் கோயில்கள் -மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் - செட்டிநாட்டு வீடுகள்- பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ- சாரோசெனிக் கட்டிடக் கலை.

அலகு 🛮 📗 உற்பத்தித் தொழில் நுட்பம்

3

கப்பல் கட்டும் கலை - உலோகவியல் - இரும்புத் தொழிற்சாலை -இரும்பை உருக்குதல், எஃகு வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் -- நாணயங்கள் அச்சடித்தல் - மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் -சுடுமண் மணிகள் - சங்கு மணிகள் - எலும்புத்துண்டுகள் - தொல்வியல் சான்றுகள்-சிலப்பதிகாரத்தில் மணிகளின் வகைகள்,

அலகு ၊v வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்:

,

அணை ஏரி, குளங்கள். மதகு - சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் -கால்நடை பராமரிப்பு - கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள்-வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் - கடல்சார் அறிவு-மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் பெருங்கடல் குறித்த பண்டைய அறிவு -அறிவுசார் சமூகம்:

அலகு v அறிவியல் தமிழ் மற்றும் கணித்தமிழ்

3

அறிவியல் தமிழின் வளர்ச்சி - கணித்தமிழ் வளர்ச்சி – தமிழ் நூல்களை மின்பதிப்பு செய்தல் - தமிழ் மென்பொருட்கள் உருவாக்கம் - தமிழ் இணையக் கல்விக்கழகம் - தமிழ் மின் நூலகம் - இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம்.

TOTAL: 15 PERIODS

TEXT-CUM REFERENCE BOOKS

- 1.தமிழக வரலாறு -மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்)
- 2. கணினித் தமிழ் முனைவர் இல சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி -வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

GE4251	TAMILS AND TECHNOLOGY	L	T	P	Ľ
		1	0	0	
UNIT I	WEAVING AND CERAMIC TECHNOLOGY				3
Weaving Indus Potteries.	stry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (Bl	RW)	– G	raffi	iti
UNIT II	DESIGN AND CONSTRUCTION TECHNOLOGY				
naterials and Cemples of Maturatudy (Madura	Structural construction House & Designs in household materials during Sangan Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram amallapuram - Great Temples of Cholas and other worship places - Temples of Nayai Meenakshi Temple) - Thirumalai Nayakar Mahal - Chetti Nadu Houses, I Madras during British Period.	ı - So aka l	culpt Perio	tures	s a
UNIT III	MANUFACTURING TECHNOLOGY				
	ilding - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold-				
oone beats - A	nting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta bearcheological evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY	nds -S	Shell	bea	ıds
UNIT IV Dam, Tank, pofor cattle use -	nting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta bearcheological evidences - Gem stone types described in Silappathikaram.	y - W	Shell Vells	bea	ig
UNIT IV Dam, Tank, por	nting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta bear rcheological evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY ands, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche	y - W	Shell Vells	bea	igı
UNIT IV Dam, Tank, por for cattle use - Knowledge of UNIT V Development	nting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta bear reheological evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY ands, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche Ocean - Knowledge Specific Society.	y - We div	Vells ring -	desi-An-	igi
UNIT IV Dam, Tank, por for cattle use - Knowledge of UNIT V Development	nting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta bear reheological evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY ands, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Devel	y - W e div	Vells ing -	desi - An of T	igi nci
Done beats - Ale UNIT IV Dam, Tank, por for cattle use - Knowledge of UNIT V Development of Software - Tank	nting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta bear cheological evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY ands, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Devel mil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuva	y - W e div	Vells ing -	desi - An of T	igi nci
Dam, Tank, por for cattle use - Knowledge of UNIT V Development of Software - Tan	nting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta bear cheological evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY ands, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Devel mil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuva	y - We div	Vells ing -	desi - An of T	ign Γa
bone beats - Ai UNIT IV Dam, Tank, por for cattle use - Knowledge of UNIT V Development of Software — Tan TEXT-CUM	nting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta bear cheological evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY ands, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Devel mil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuva TOTAL REFERENCE BOOKS	y - We div	Vells ing -	desi - An of T	ig Γa
bone beats - Ai UNIT IV Dam, Tank, por for cattle use - Knowledge of UNIT V Development of Software — Tan TEXT-CUM 1.தமிழக வ	nting of Coins — Beads making-industries Stone beads -Glass beads - Terracotta bear cheological evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY ands, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry Agriculture and Agro Processing - Knowledge of Sea - Fisheries — Pearl - Conche Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING of Scientific Tamil - Tamil computing — Digitalization of Tamil Books — Devel mil Virtual Academy — Tamil Digital Library — Online Tamil Dictionaries — Sorkuva TOTAL REFERENCE BOOKS TOUTH — CB.CS. பிள்ளை (வெளியீடு: தமி	y - We div	Vells ing -	desi - An of T	ig Γa
bone beats - Ai UNIT IV Dam, Tank, por for cattle use - Knowledge of UNIT V Development of Software – Tan TEXT-CUM 1.தமிழக வ பாடநூல் ட	nting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta bear reheological evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY ands, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Devel mil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuva TOTAL REFERENCE BOOKS நலாறு -மக்களும் பண்பாடும் - கே.கே. பிள்ளை (வெளியீடு: தமிற்றும் கல்வியியல் பணிகள் கழகம்)	y - We div	Vells ing -	desi - An - Tof T	ig

5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL-(in print) 6. Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International

Institute of Tamil Studies.

7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by:
International Institute of Tamil Studies).
8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International
Institute of Tamil Studies.)
9. Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of
Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The
Author)
11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and
Educational Services Corporation, Tamil Nadu)
12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) – Reference Book.

GE4207				P	C	
GE4207	ENGINEERING PRACTICES LABORATORY	0	0	4	2	
OBJECTIVES	5					
To pro	vide exposure to the students with hands on experience on various basic engine	ering	g pra	ctice	s in	
Civil, N	Mechanical, Electrical and Electronics Engineering					
LIST OF EXP	ERIMENTS					
GROUP A (CI	VIL & MECHANICAL)					
I CIVIL EN	NGINEERING PRACTICE					
Buildings:						
(a)	Study of plumbing and carpentry components of residential and industrial by Safety aspects.	ıildir	igs.			
Plumbing	• •					
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.						
(b) Study of	of pipe connections requirements for pumps and turbines.					

	(b) Study of pipe connections requirements for pumps and turbines.	CO1					
(c) Preparation of plumbing line sketches for water supply and sewage works.							
	(d) Hands-on-exercise:						
	Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.						
	(e) Demonstration of plumbing requirements of high-rise buildings.						
	Carpentry using Power Tools only:						
	(a) Study of the joints in roofs, doors, windows and furniture.						
	(b) Hands-on-exercise:						
	Wood work, joints by sawing, planning and cutting.						
II	MECHANICAL ENGINEERING PRACTICE						
	Welding:						
	(a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.						
	(b) Gas welding practice						
	Basic Machining:						
	(a) Simple Turning and Taper turning						
	(b) Drilling Practice						
	Sheet Metal Work:						
	(a) Forming & Bending:						
	(b) Model making – Trays and funnels.	CO2					
	(c) Different type of joints.						
	Machine assembly practice:						
	(a) Study of centrifugal pump						
	(b) Study of air conditioner						
	Demonstration on:						
	(a) Smithy operations, upsetting, swaging, setting down and bending. Example –						
	Exercise – Production of hexagonal headed bolt.						
	(b) Foundry operations like mould preparation for gear and step cone pulley.						

	(c) Fitting – Exercises – Preparation of square fitting and V – fitting models.	
	GROUP B (ELECTRICAL & ELECTRONICS)	
III	ELECTRICAL ENGINEERING PRACTICE	
1.	Residential house wiring using switches, fuse, indicator, lamp and energy meter.	CO3
2.	Fluorescent lamp wiring.	003
3.	Stair case wiring	
4.	Measurement of electrical quantities – voltage, current, power & power factor in RLC circuit.	CO4
5.	Measurement of energy using single phase energy meter.	CO4
6.	Measurement of resistance to earth of an electrical equipment.	

IV ELECTRONICS ENGINEERING PRACTICE

- 1. Study of electronic components and equipment's Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
- 2. Study of logic gates AND, OR, EX-OR and NOT.

3. Generation of Clock Signal.

4. Soldering practice – Components Devices and Circuits – Using general purpose PCB. Measurement of ripple factor of HWR and FWR.

CO5

TOTAL: 60 PERIODS

S.No.	DESCRIPTION OF EQUIPMENT	Quantity
	CIVIL	required
1.	Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.	15 sets
2.	Carpentry vice (fitted to work bench)	15 Nos
3.	Standard woodworking tools 15 Sets.	15 Sets.
4.	Models of industrial trusses, door joints, furniture joints	5 each
5.	Power Tools: (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw	2 Nos
	MECHANICAL	<u> </u>
1.	Arc welding transformer with cables and holders.	5 Nos
2.	Welding booth with exhaust facility.	5 Nos
3.	Welding accessories like welding shield, chipping hammer, wire brush, etc.	5 Sets
4.	Oxygen and acetylene gas cylinders, blow pipe and other welding outfit.	2 Nos
5.	Centre lathe.	2 Nos
6.	Hearth furnace, anvil and smithy tools.	2 Sets
7.	Moulding table, foundry tools.	2 Sets
8.	Power Tool: Angle Grinder.	2 Nos
9.	Study-purpose items: centrifugal pump, air-conditioner.	1 Each
	ELECTRICAL	1
1.	Assorted electrical components for house wiring.	15 Sets
2.	Electrical measuring instruments.	10 Sets
3.	Study purpose items: Iron box, fan and regulator, emergency lamp.	1 each
4.	Megger (250V/500V).	1 No.
5.	Power Tools: (a) Range Finder (b) Digital Live-wire detector	2 Nos
	ELECTRONICS	40.57
1.	Soldering guns 10 Nos.	10 Nos.
2.	Assorted electronic components for making circuits 50 Nos.	50 Nos.
3.	Small PCBs.	10 Nos.
4.	Multimeters	10 Nos.
5.	Study purpose items: Telephone, FM radio, low-voltage power supply	1 each

COUI	COURSE OUTCOMES								
Upon completion of the course, students will be able to									
CO1	Fabricate carpentry components and pipe connections including plumbing works. Use welding equipment's to join the structures.								
CO2	Carry out the basic machining operations Make the models using sheet metal works								
CO3	Carry out basic home electrical works and appliances.								
CO4	Measure the electrical quantities								
CO5	Elaborate on the components, gates, soldering practices								

MAPPING OF COs WITH POs AND PSOs

COs	PROGRAM OUTCOMES (POs)									SPI OUT		GRAM CIFIC OMES (Os)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	3	-	-	3	-	-	-	-	-	3	1	2
CO2	3	2	3	-	-	3	-	-	-	-	-	3	1	2
CO3	3	1	2	-	-	2	-	-	-	-	-	3	1	2
CO4	3	2	3	3	1	3	1	1	1	1	2	3	1	2
CO5	3	2	3	3	1	2	1	1	1	1	2	3	1	2

BE4258

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

L	T	P	C
0	0	4	2

OBJECTIVES

❖ To validate the principles studied in theory by performing experiments in the laboratory

LIST OF EXPERIMENTS

1. Verification of Kirchhoff's voltage and current laws	CO1
2. Verification of Thevenin's and Norton's theorem.	
3. Load Test on DC Shunt Motor	CO ₂
4. Speed Control of DC Shunt Motor	
5. Load Test on single phase transformer	CO3
6. Load test on three phase squirrel cage induction motor.	
7. Transistor based application circuits	
8. Half wave rectifier with capacitive filter.	CO4
9. Characteristics of PN Diode.	
10. Characteristics of BJT	
11. RTD and Thermistor	CO5
12. Characteristics of LVDT	230

TOTAL: 60 PERIODS

COURSE OUTCOMES

Upon completion of the course, students will be able toR

_	
CO1	Understand and experimentally verify the basics of electric circuit laws
CO2	Understand and apply circuit theorems and concepts in engineering applications
CO3	Analyze and understand the working of AC machines.
CO4	Understand and analyze the characteristics of diode, transistor and implement transistor based application.
CO5	Understand and analyze the characteristics of different transducers.

MAPPING OF COS WITH POS AND PSOS

COs	PROGRAMOUTCOMES(POs)											PROG SPEC OUTC (PS	CIFIC	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	1	1	1	2	1	3	3	1	2
CO2	3	3	3	3	3	2	1	1	2	1	3	3	1	2
CO3	3	3	3	3	3	1	2	1	2	1	3	3	1	2
CO4	3	3	3	3	3	1	1	1	2	1	3	3	1	2
CO5	3	3	3	3	3	2	1	1	2	1	3	3	1	2

MA4352

TRANSFORMS AND COMPLEX FUNCTIONS

L	T	P	C
3	1	0	4

OBJECTIVES

- This course is designed to cover topics such as Complex Analysis, Ordinary Differential Equations, Z-Transforms and Laplace Transform.
- ❖ To develop an understanding of the standard techniques analytic function and its mapping property.
- ❖ To familiarize the students with complex integration and contour integration techniques which can be used in real integrals.
- ❖ To acquaint the students with Differential Equations which are significantly used in engineering problems.
- ❖ To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z-transform techniques for discrete time systems
- ❖ To apply Laplace transforms for solving the problems that occur in various branches of engineering disciplines.

1							
UNIT I	ANALYTIC FUNCTIONS	9+3					
Analytic functi	ons – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates						
- Properties – Harmonic conjugates – Construction of analytic function – Conformal mapping – Mapping by functions $w = Z + C$, CZ , $1/Z$ - Bilinear transformation							
by functions w	- Z + C, CZ, 1/Z - Diffical transformation						
UNIT II	COMPLEX INTEGRATION	9+3					
Cauchy's integ	gral theorem - Cauchy's integral formula - Taylor's and Laurent's series - Singularities						
- Residues - R	esidue theorem - Application of residue theorem for evaluation of real integrals - Use of						
circular contou	r and semi-circular contour(excluding poles on the real line)	CO2					
UNIT III	ORDINARY DIFFERENTIAL EQUATIONS	9+3					
Higher order lin	ear differential equations with constant coefficients - Method of variation of parameters-						
Homogenous e	equation of Euler's and Legendre's type – System of simultaneous linear differential equations	CO3					
with constant c	oefficients						
UNIT IV	Z – TRANSFORMS AND DIFFERENCE EQUATIONS	9+3					
Z-transforms –	Elementary properties – Inverse Z-transform (using partial fraction and residues) –Initial						
and final value	e theorems - Convolution theorem - Formation of difference equations - Solution of						
difference equa	ations using Z – transform.	CO4					
UNIT V	LAPLACE TRANSFORMS	9+3					
Existence cond	itions – Transforms of elementary functions –Basic properties - Shifting theorems - transforms						
of derivatives ar	nd integrals — Inverse transforms – Convolution theorem – Transform of periodic functions –						
Application to s	olution of linear second order ordinary differential equations with constant coefficients.	CO5					

TOTAL: 60 PERIODS

TEXT BOOKS

- 1. Grewal B.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43rd Edition, 2014.
- 2. Kreyszig Erwin, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.

REFERENCE BOOKS

- 1. G Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 2. Jain R.K. and Iyengar S.R.K., Advanced Engineering Mathematics, Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. O Neil, P.V. —Advanced Engineering Mathematicsl, Cengage Learning India Pvt., Ltd, New Delhi, 2007.
- 4. Sastry, S.S, "Engineering Mathematics", Vol. I & II, PHI Learning Pvt. Ltd, 4th Edition, New Delhi, 2014
- 5. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012

COURSE OUTCOMES

Upon completion of the course, students will be able to

_	,
CO1	Understand Analytic functions, conformal mapping & Bilinear transformation.
CO2	Evaluate real integration by Complex integration techniques.
CO3	Apply various techniques in solving ordinary differential equations.
CO4	Use the effective mathematical tools for the solutions of partial differential equations by using Z-transform techniques for discrete time systems.
CO5	Apply Laplace transform and inverse transform of simple functions, properties and various related theorems in solving differential equations with constant coefficients.

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	2	2	1	1	-	-	-	-	1	3	-	
CO2	3	3	3	2	2	2	1	-	-	-	-	1	3	-	
CO3	3	3	3	2	3	3	2	-	-	1	1	3	2	-	
CO4	3	1	1	1	2	1	1	1	2	2	1	0	2	-	
CO5	3	3	3	2	2	2	1	-	-	-	-	1	2	-	

ME4301

FLUID MECHANICS AND MACHINERY

L	Т	P	C
3	0	0	3

TOTAL: 45 PERIODS

COURSE OBJECTIVES:

- To introduce the students about properties of the fluids, behavior of fluids under static conditions.
- To impart basic knowledge of the dynamics of fluids and boundary layer concept.
- To expose to the applications of the conservation laws to a) flow measurements b) flow through pipes (both laminar and turbulent) and c) forces on pipe bends.
- To exposure to the significance of boundary layer theory and its thicknesses.
- To expose the students to basic principles of working of hydraulic machineries and to design Pelton wheel, Francis and Kaplan turbine, centrifugal and reciprocating pumps.

UNIT I	FLUID PROPERTIES AND FLOW CHARACTERISTICS	9					
Properties of fluids – Fluid statics - Pressure Measurements - Buoyancy and floatation – Flow characteristics - Eulerian and Lagrangian approach - Concept of control volume and system - Reynold's transportation theorem - Continuity equation, energy equation and momentum equation - Applications.							
UNIT II	FLOW THROUGH PIPES AND BOUNDARY LAYER	9					
Moody diagram -	iment - Laminar flow through circular conduits - Darcy Weisbach equation – friction factor - Major and minor losses - Hydraulic and energy gradient lines - Pipes in series and parallel - oncepts - Types of boundary layer thickness.	CO2					
UNIT III	DIMENSIONAL ANALYSIS AND MODEL STUDIES	9					
	parameters - Similitude and model studies - Distorted and undistorted models.	CO3					
UNIT IV	TURBINES	9					
Principles - Pelto	Velocity triangles - Theory of rotodynamic machines - Classification of turbines - Working on wheel - Modern Francis turbine - Kaplan turbine - Work done - Efficiencies - Draft tube - Performance curves for turbines - Governing of turbines.	CO4					
UNIT V	PUMPS	9					
- Work done by	f pumps - Centrifugal pumps - Working principle - Heads and efficiencies—Velocity triangles the impeller - Performance curves - Reciprocating pump working principle - Indicator diagram ns - Work saved by fitting air vessels - Rotary pumps.	CO5					

TEXTBOOKS

- 1. Dr. R. K. Bansal., A Textbook of Fluid Mechanics and Hydraulic Machines. Laxmi Publications, New Delhi, 2017
- 2. S. Ramamrutham, R. Narayan · Hydraulics, Fluid Mechanics And Fluid Machines, Dhanpat Rai Books 2014
- 3. Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi, 2014.

REFERENCE BOOKS

- 1. Modi P.N. and Seth, S.M. Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 22nd edition (2019)
- 2. Kumar K. L., Engineering Fluid Mechanics, Eurasia Publishing House(p) Ltd. New Delhi, 2016.
- 3. Fox W.R. and McDonald A.T., Introduction to Fluid Mechanics John-Wiley and Sons, Singapore, 2011.
- 4. Pani B S, Fluid Mechanics: A Concise Introduction, Prentice Hall of India Private Ltd, 2016.

COUL	RSE OUTCOMES							
Upon	Upon completion of the course, students will be able to:							
CO1	Understand the properties and behaviour in static conditions. Also, to understand the conservation laws applicable to fluids and its application through fluid kinematics and dynamics							
CO2	Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel. Also, to understand the concept of boundary layer and its thickness on the flat solid surface.							
CO3	Formulate the relationship among the parameters involved in the given fluid phenomenon and to predict the performances of prototype by model studies							
CO4	Explain the working principles of various turbines and design the various types of turbines.							
CO5	Explain the working principles of centrifugal, reciprocating and rotary pumps and design the centrifugal and reciprocating pumps							

MAPPING OF COs WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	2	1	2	2	1	2	1	1	2	3	2	
CO2	3	3	3	2	1	2	2	1	2	1	1	2	3	2	
CO3	3	3	3	3	1	2	2	1	2	1	1	2	3	2	
CO4	3	3	3	3	1	2	2	1	2	1	1	2	3	2	
CO5	3	3	3	3	1	2	2	1	2	1	1	2	3	2	

N. F. 4202		L	T	P	C
ME4302	ENGINEERING THERMODYNAMICS	3	1	0	4

OBJECTIVES

- ❖ Impart knowledge on the basics and application of zeroth and first law of thermodynamics.
- ❖ Impart knowledge on the second law of thermodynamics in analysing the performance of thermal devices.
- Impart knowledge on availability and applications of second law of thermodynamics
- ❖ Teach the various properties of steam through steam tables and Mollier chart.
- ❖ Impart knowledge on the macroscopic properties of ideal and real gases.

UNIT I	BASICS, ZEROTH AND FIRST LAW	9+3					
Review of	Basics - Thermodynamic systems, Properties and processes Thermodynamic Equilibrium -						
Displaceme	Displacement work - P-V diagram. Thermal equilibrium - Zeroth law - Concept of temperature and						
Temperatur	re Scales. First law – application to closed and open systems – steady and unsteady flow processes.	CO1					
UNIT II	SECOND LAW AND ENTROPY	9+3					
Heat Engir	ne – Refrigerator - Heat pump. Statements of second law and their equivalence & corollaries.						
_	le - Reversed Carnot cycle - Performance - Clausius inequality. Concept of entropy - T-s diagram	CO2					
- Tds Equa	tions - Entropy change for a pure substance.						
UNIT III	AVAILABILITY AND APPLICATIONS OF II LAW	9+3					
Ideal gases	undergoing different processes - principle of increase in entropy. Applications of II Law. Highand						
low-grade e	energy. Availability and Irreversibility for open and closed system processes - I and II law Efficiency	CO3					
UNIT IV	PROPERTIES OF PURE SUBSTANCES	9+3					
Formation	of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T						
surface. U	se of Steam Table and Mollier Chart. Determination of dryness fraction. Application of						
I and II la	w for pure substances. Ideal and actual Rankine cycles, Cycle Improvement Methods -	CO4					
Reheat and	d Regenerative cycles,						
UNIT V	IDEAL AND REAL GASES, THERMODYNAMIC RELATION	9+3					
Properties	of Ideal gas, real gas - comparison. Equations of state for ideal and real gases. vander Waal's						
relation - Reduced properties - Compressibility factor - Principle of Corresponding states - Generalized							
_	bility Chart. Maxwell relations - TdS Equations - heat capacities relations - Energy equation,	CO5					
JouleThom	son experiment - Clausius-Clapeyron equation.						

TEXTBOOKS

- 1. Nag.P.K., "Engineering Thermodynamics", 6th Edition, Tata McGraw Hill (2017), New Delhi.
- 2. Natarajan, E., "Engineering Thermodynamics: Fundamentals and Applications", 2nd Edition (2014), Anuragam Publications, Chennai.

TOTAL: 60 PERIODS

REFERENCE BOOKS

- 1. Cengel, Y and M. Boles, Thermodynamics An Engineering Approach, Tata McGraw Hill,9th Edition, 2019.
- 2. Chattopadhyay, P, "Engineering Thermodynamics", 2nd Edition Oxford University Press, 2016.
- 3. Rathakrishnan, E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice Hall of India Pvt. Ltd, 2006.
- 4. Claus Borgnakke and Richard E. Sonntag, "Fundamentals of Thermodynamics", 10th Edition, Wiley Eastern, 2019.
- 5. Venkatesh. A, "Basic Engineering Thermodynamics", Universities Press (India) Limited, 2007

	COURSE OUTCOMES Upon completion of the course, students will be able to:					
	Understand the Forecasting methods and planning procedure.					
CO2	Explain the concepts of general management, financial management, human resources, production management, and marketing management.					
СОЗ	Illustrate the application with to identify solutions to industry problems					
CO4	Implement the Principles of Scientific and personnel Management					
CO5	Identify the optimum solutions with system approach to both industry and service sector.					

MAPPING OF COs WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	1	-	-	-	-	-	-	-	2	3	2	
CO2	3	3	2	1	-	-	-	-	-	-	-	2	3	2	
CO3	3	3	2	1	-	-	-	-	1	-	1	2	3	2	
CO4	3	3	2	1	-	1	-	-	2	-	1	2	3	2	
CO5	3	3	2	1	-	1	-	-	2	-	1	2	3	2	

ME 4202	ME4202 MANUEACTURING PROCESSES						
ME4303	MANUFACTURING PROCESSES	3	0	0	3		
OBJECTIVES ❖ To illustrate the working principles of various metal casting processes. ❖ To learn and apply the working principles of various metal joining processes. ❖ To analyse the working principles of bulk deformation of metals. ❖ To learn the working principles of sheet metal forming process. ❖ To study and practice the working principles of plastics molding.							
UNIT I	METAL CASTING PROCESSES			9)		
Properties and investment – C	- Sand Mould – Type of patterns - Pattern Materials – Pattern allowances – Mold testing – Cores –Types and applications –Principle of special casting processes Ceramic mould – Pressure die casting – low pressure, gravity- Tilt pouring, high prefugal Casting – CO2 casting — Defects in Sand casting process-remedies	es- S	hell,	CC)1		
UNIT II	METAL JOINING PROCESSES			9)		
welding – Gas Resistance wel	Fusion welding processes – Oxy fuel welding – Filler and Flux materials—Arc welding, Gas Tungsten arc welding – Gas metal arc welding – Submerged arc welding – Electro slag welding – Plasma arc welding — Resistance welding Processes -Electron beam welding –Laser beam Welding Friction welding – Friction stir welding – Diffusion welding – Thermit Welding, Brazing - soldering – Adhesive bonding.						
UNIT III	BULK DEFORMATION PROCESSES				9		
forging- Charac Flat strip rolling	nd cold working of metals – Forging processes – Open, impression and closed die forging cteristics of the processes – Typical forging operations – rolling of metals – Types of Equations – Separations – Defects in rolled parts – Principle of rod and wire drawing ciples of Extrusion – Types – Hot and Cold extrusion. Introduction to shaping operation	Rolli 1g – T	ng –	CC)3		
UNIT IV	SHEET METAL PROCESSES				9		
Sheet metal characteristics – Typical shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods –special forming processes - Working principle and applications – Hydro forming – Rubber pad forming – Metal spinning – Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Micro forming – Incremental forming.							
UNIT V	MANUFACTURE OF PLASTIC COMPONENTS				9		
Types and characteristics of plastics – Molding of thermoplastics & Thermosetting polymers– working principles and typical applications – injection molding – Plunger and screw machines – Compression molding, Transfer Molding – Typical industrial applications – introduction to blow molding – Rotational molding – Filmblowing – Extrusion – Thermoforming – Bonding of Thermoplastics- duff moulding.							
	TOTA	L: 4	5 PE	RIO	DS		

TEXTBOOKS

- 1. C.Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India, 4th Edition, 2013
- 2. P.N.Rao Manufacturing Technology Volume 1 Mc Grawhill Education 5th edition, 2018.

REFERENCE BOOKS

- 1. Roy. A. Lindberg, Processes and materials of manufacture, PHI / Pearson education, 2006.
- 2. S. Gowri P. Hariharan, A.Suresh Babu, Manufacturing Technology I, Pearson Education, 2008.
- 3. Paul Degarma E, Black J.T and Ronald A. Kosher, Eligth Edition, Materials and Processes, in Manufacturing, Eight Edition, Prentice Hall of India, 1997.
- 4. Hajra Chouldhary S.K and Hajra Choudhury. AK., Elements of workshop Technology, volume I and II, Media promoters and Publishers Private Limited, Mumbai, 1997
- 5. Sharma, P.C., A Text book of production Technology, S.Chand and Co. Ltd., 2004

	COURSE OUTCOMES Upon completion of the course, students will be able to:					
CO1	CO1 Explain the principle of different metal casting processes.					
CO2	Describe the various metal joining processes.					
CO3	lustrate the different bulk deformation processes.					
CO4	Apply the various sheet metal forming process.					
CO5	Apply suitable molding technique for manufacturing of plastics components.					

MAPPING OF COs WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)											PROG SPEC OUTC (PS	CIFIC OMES
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	2	-	-	2	3	1	1	-	-	1	3	1
CO2	3	-	2	-	-	2	3	1	1	-	-	1	3	1
CO3	3	-	2	-	-	2	2	1	1	-	-	1	3	1
CO4	3	-	2	-	-	2	2	1	1	-	-	1	3	1
CO5	3	-	2	-	2	2	2	1	1	-	-	1	3	1

NE 4204	PA ENGINEERING MATERIALS AND METALLURGY L T P									
ME4304										
OBJECTIVES										
❖ 1 To lea	arn the constructing the phase diagram and using of iron-iron carbide phase diagram for microstructure on.									
	arn selecting and applying various heat treatment processes and its microstructure formation.									
❖ 3. To ill	lustrate the different types of ferrous and non-ferrous alloys and their uses in engineering field.									
	lustrate the different polymer, ceramics and composites and their uses in engineering field.									
❖ 5. To le	arn the various testing procedures and failure mechanism in engineering field.	_								
UNIT I	CONSTITUTION OF ALLOYS AND PHASE DIAGRAMS	9								
peritectic, and j	alloys – Solid solutions, substitutional and interstitial – phase diagrams, Isomorphous, eutectic, eutectoid, peritectoid reactions, Iron – Iron carbide equilibrium diagram. Classification of steel and cast-Iron properties and application.									
UNIT II	HEAT TREATMENT	9								
steel. Isotherma Transformation hardening, carb	Il annealing, stress relief, recrystallisation and spheroidising –normalizing, hardening and tempering of al transformation diagrams – cooling curves superimposed on I.T. diagram – continuous cooling (CCT) diagram – Austempering, Martempering – Hardenability, Jominy end quench test -case urizing, Nitriding, cyaniding, carbonitriding – Flame and Induction hardening – Vacuum and Plasma ermo-mechanical treatments- elementary ideas on sintering.	CO2								
UNIT III	FERROUS AND NON-FERROUS METALS	9								
steels – Grey, w – Aluminium a	Effect of alloying additions on steel (Mn, Si, Cr, Mo, Ni, V,Ti& W) – stainless and tool steels – HSLA - Maraging steels – Grey, white, malleable, spheroidal – alloy cast irons, Copper and its alloys – Brass, Bronze and Cupronickel – Aluminium and its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys, Ni-based super alloys – shape memory alloys- Properties and Applications overview of materials standards									
UNIT IV	UNIT IV NON-METALLIC MATERIALS 5									
•	es of polymers, commodity and engineering polymers – Properties and applications of PE, PP, PS, PVC, PC, PA, ABS, PAI, PPO, PPS, PEEK, PTFE, Thermoset polymers – Urea and Phenol formaldehydes –	-								

PMMA, PET, PC, PA, ABS, PAI, PPO, PPS, PEEK, PTFE, Thermoset polymers – Urea and Phenol formaldehydes –

Nylon, Engineering Ceramics - Properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON - intermetallics-Composites- Matrix and reinforcement Materials applications of Composites - Nano composites.

UNIT V MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS

Mechanisms of plastic deformation, slip and twinning – Types of fracture – Griffith's theory- Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), Micro and nano- CO5 hardness tests, Impact test Izod and charpy, fatigue and creep failure mechanisms.

TOTAL: 45 PERIODS

CO4

9

TEXTBOOKS

- 1. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 9th edition ,2018.
- 2. Sydney H.Avner, "Introduction to Physical Metallurgy", McGraw Hill Book Company, 199

REFERENCE BOOKS

- 1. A. Alavudeen, N. Venkateshwaran, and J. T. Winowlin Jappes, A Textbook of Engineering Materials and Metallurgy, Laxmi Publications, 2006.
- 2. Amandeep Singh Wadhwa, and Harvinder Singh Dhaliwal, A Textbook of Engineering Material and Metallurgy, University Sciences Press, 2008
- 3. G.S. Upadhyay and Anish Upadhyay, "Materials Science and Engineering", Viva Books Pvt.Ltd, New Delhi, 2020.
- 4. Raghavan.V, "Materials Science and Engineering", Prentice Hall of India Pvt.Ltd. 6th edition, 2019.
- 5. Williams D Callister, "Material Science and Engineering" Wiley India Pvt Ltd, 2nd edition Re print 2019.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Explain alloys and phase diagram, Iron-Iron carbon diagram and steel classification.
CO2	Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.
CO3	Clarify the effect of alloying elements on ferrous and non-ferrous metals.
CO4	Summarize the properties and applications of non-metallic materials.
CO5	Explain the testing of mechanical properties.

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	3	2	-	-	-	-	-	-	-	2	3	-	
CO2	3	1	3	2	-	-	-	-	-	-	-	2	3	-	
CO3	3	1	3	2	-	-	-	-	-	-	-	2	3	-	
CO4	3	1	3	2	-	-	-	-	-	-	-	2	3	-	
CO5	3	1	3	2	-	-	-	-	-	-	-	2	3	-	

ME4306

COMPUTER AIDED MACHINE DRAWING LABORATORY

L	T	P	C
0	0	4	2

OBJECTIVES

- To apply Indian Standards in drawing practices of machine components.
- To use hand books for the selection of the standard components like bolts, nuts, screws, keys etc.
- To show the limits, fits and tolerances in the production drawings of machine components.
- ❖ To prepare assembly drawings both manually and using standard CAD packages.
- To add the knowledge on 3D Modelling with the detailing features available in the standard CAD packages for converting 3D models into 2D drawings.

DRAWING STANDARDS & FITS AND TOLERANCES	12
Code of practice for Engineering Drawing, BIS specifications – Welding symbols, riveted joints, keys, fasteners – Reference to hand book for the selection of standard components like bolts, nuts, screws, keys etc Limits, Fits – Tolerancing of individual dimensions – Specification of Fits – Preparation of production drawings and reading of part and assembly drawings, basic principles of geometric dimensioning & Tolerance.	CO1
INTRODUCTION TO 2D DRAFTING	16
 Drawing, Editing, Dimensioning, Layering, Hatching, Block, Array, Detailed drawing. Bearings - Bush bearing, Plummer block Valves - Safety and non-return valves. 	CO2
3D GEOMETRIC MODELING AND ASSEMBLY	32
 Sketcher - Datum planes – Protrusion – Holes - Part modeling – Extrusion – Revolve – Sweep – Loft – Blend – Fillet - Pattern – Chamfer - Round - Mirror – Section – Assembly - Detailing for production drawing. Couplings – Flange, Universal, Oldham's, Muff, Gear couplings Joints – Knuckle, Gib & cotter, strap, sleeve & cotter joints Engine parts – Piston, connecting rod, cross-head (vertical and horizontal), stuffing box, multi-plate clutch Miscellaneous machine components – Screw jack, machine vice, tail stock, chuck, vane and gear pump 	CO3
TOTAL: 60 PE	RIODS

Note: 25% of assembly drawings must be done manually and the remaining 75% of assembly drawings must be done by using any CAD software. The above tasks can be performed manually and using standard commercial 2D / 3D CAD software

TEXTBOOKS

1. Gopalakrishna K.R., —Machine Drawingl, 22nd Edition, Subhas Stores Books Corner, Bangalore, 2017

REFERENCE BOOKS

- 1. N. D. Bhatt and V.M. Panchal, —Machine Drawing, 48th Edition, Charotar Publishers, 2016
- 2. K.L. Narayana, P. Kannaiam and K. Venkata Reddy, Machine Drawing, published by New Age International Publishers. 2019.
- 3. N. Siddeshwar, P. Kanniah, V.V.S. Sastri, Machine Drawing, published by Mc GrawHill, 2017
- 4. Engineering Drawing Practice for Schools and Colleges BIS SP46:2003 (R2008), Published by Bureau of Indian Standards (BIS), 2008.

COURSE OUTCOMES Upon completion of the course, students will be able to:						
CO1	Apply the knowledge on standards in drawing practices to prepare the production drawings.					
CO2	Use the hand books for selecting the standard components in the drafting of Machine components.					
CO3	Distinguish between the 2D drafting and 3D modeling processes available in the standard CAD packages.					

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S. NO	Description of the Equipment	Quantity
1.	Computer nodes or systems with suitable graphics facility	30 Nos
2.	Licensed software for Drafting and Modeling	30 Nos
3.	Laser Printer or Plotter to print / plot drawings	1 No

ME4307

MANUFACTURING PROCESSES LABORATORY

L	T	P	C
0	0	4	2

OBJECTIVES

To study and practice the various operations that can be performed in lathe, shaper, drilling, milling machines etc. and to equip with the practical knowledge required in the core industries.

LIST OF EXPERIMENTS

Machining and Machining time estimations for:

- 1. Taper Turning
- 2. External Thread cutting
- 3. Internal Thread Cutting
- 4. Eccentric Turning
- 5. Knurling

Casting and Joining processes

- 6. Joining of plates by horizontal, vertical and overhead welding (Arc Welding)
- 7. Joining of plates and pipes using Gas Metal Arc Welding/ Arc Welding / Submerged arc welding
- 8. Preparation of green sand moulds for various patterns

CO5 Use different moulding tools, patterns and prepare sand moulds

- 9. Manufacturing of simple sheet metal components using shearing and bending operations.
- 10. Manufacturing of sheet metal components using metal spinning on a lathe.

COU	RSE OUTCOMES			
Upon	Upon completion of the course, students will be able to			
CO1	Demonstrate the safety precautions exercised in the mechanical workshop.			
CO2	Make the workpiece as per given dimensions and calculate machining time for different operations in Lathe.			
CO3	Join two metals using arc welding			
CO4	Use sheet metal fabrication tools and make simple tray and funnel			

MAPPING OF COs WITH POS AND PSOS

COs	PROGRAM OUTCOMES (Pos)									PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	2	3	3	3	3	3	3	3	3	3	1
CO2	3	1	3	2	3	3	3	3	3	3	3	3	3	1
CO3	3	1	2	2	3	3	3	3	3	3	3	3	3	1
CO4	3	1	2	2	3	3	3	3	3	3	3	3	3	1
CO5	3	1	2	2	3	3	3	3	3	3	3	3	3	1

TTC 421	Λ
H & /I & I	()
1117711	₹,

PROFESSIONAL SKILLS LAB

L	T	P	C
0	0	2	1

OBJECTIVES

- ❖ Enhance the employability and career skills of students
- ❖ Orient the students towards grooming as a professional
- Make them employable graduates
- ❖ To acquaint themselves with the major generic divisions in English literature
- ❖ Develop their confidence and help them attend interviews successfully

LIST OF EXPERIMENTS

UNIT I	6
Introduction to soft skills – Hard skills & Soft skills – employability and career skills – grooming as a professional with values – making an oral presentation – planning and preparing a model presentation – organizing the presentation to suit the audience and context; connecting with the audience with the presentation; projecting a positive image while speaking; emphasis on effective body language – general awareness of current affairs	CO1
UNIT II	6
Self-Introduction – organizing the material – introducing oneself to the audience introducing the topic answering questions individual presentation practice – making a power point presentation – structure and format; covering elements of an effective presentation; body language dynamics – making an oral presentation–planning and preparing a model presentation – organizing the presentation to suit the audience and context; connecting with the audience with the presentation; projecting a positive image while speaking; emphasis on effective body language	CO2
UNIT III	6
Introduction to group discussion – participating in group discussions – understanding group dynamics – brain storming the topic – questioning and clarifying – GD strategies – structure and dynamics of a GD; techniques of effective presentation in group discussion; preparing for group discussion; accepting others' views /ideas; arguing against others' views or ideas etc	CO3
UNIT IV	6
Basics of public speaking; preparing for a speech; features of a good speech; speaking with a microphone. (Famous speeches maybe played as model speeches for learning the art of public speaking). Interview etiquette – dress code – body language – attending interviews – telephone/skype interview – one-to-one & a panel interview job interviews purpose and process; how to prepare for an interview; language and style to be used in an interview types of interview questions and how to answer them	CO4
UNIT V	6
UNII V	

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

- One Server
- **❖** 30 Desktop Computers
- ❖ One Hand Mike
- One LCD Projector

TEXT BOOKS

- 1. Butterfield, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi,2015
- 2. E. Suresh Kumar et al, Communication for Professional Success. Orient Blackswan: Hyderabad, 2015
- 3. Raman, Meenakshi and Sangeetha Sharma. Professional Communication. Oxford University Press: Oxford 2014
- 4. S. Hariharan et al. Soft Skills. MJP Publishers: Chennai, 2010
- 5. Interact English Lab Manual for Undergraduate Students, Orient BlackSwan: Hyderabad, 2016.

	RSE OUTCOMES completion of the course, students will be able to						
	CO1 Develop adequate Soft Skills required for the workplace						
CO2	CO2 Make effective presentations						
CO3	Participate confidently in Group discussions						
CO4	Attend job interviews and be successful in them						
CO5	Hone their communications skills for their career						

		MAPPING OF COs WITH POs ANPSOs														
COs		PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	-	2	-	2	1	-	-	-	2	3	-	-	2	2		
CO2	-	2	-	2	-	-	-	-	2	3	-	-	2	2		
CO3	-	-	-	-	-	-	-	-	2	2	-	1	2	2		
CO4	-	-	-	-	-	-	-	-	2	2	-	2	1	1		
CO5	-	2	1	1	2	-	2	-	2	3	-	2	3	3		

N/ A / / O1		L	T	P	C
MA4401	PROBABILITY AND STATISTICS	3	1	0	4

OBJECTIVES

- This course aims at providing the required skill to apply the statistical tools in engineering problems.
- ❖ To introduce the basic concepts of probability and random variables.
- ❖ To introduce the basic concepts of two dimensional random variables.
- * To provide necessary basic concepts of probability and random processes for applications in engineering.
- ❖ To introduce the basic concepts and important roles in the statistical quality control.

UNIT I	PROBABILITY AND RANDOM VARIABLES	9+3
Discrete and cont	inuous random variables – Moments – Moment generating functions – Binomial, Poisson,	001
Geometric, Unifo	orm, Exponential and Normal distributions.	CO1
UNIT II	TWO - DIMENSIONAL RANDOM VARIABLES	9+3
Joint distribution	s - Marginal and conditional distributions - Covariance - Correlation and linear regression -	
Transformation o	f random variables.	CO2
UNIT III	RANDOM PROCESSES	9+3
Classification -	Stationary process - Markov process - Poisson process - Discrete parameter Markov	
chain – Chapma	an Kolmogorov equations (Statement only) – Limiting distributions.	CO3
UNIT IV	NON-PARAMETRIC TESTS	9+3
Introduction –	The Sign test – The Signed – Rank test – Rank – sum tests – The U test – The H test –	~ .
Tests based on I	Runs – Test of randomness – The Kolmogorov Test.	CO4
UNIT V	STATISTICAL QUALITY CONTROL	9+3
Control charts f	For measurements (X and R charts) – Control charts for attributes (p, c and np charts) –	
Tolerance limits	- Acceptance sampling.	CO5

TOTAL: 60 PERIODS

TEXT BOOKS

- 1. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.
- 2. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Edition, 2007.
- 3. Ibe, O.C., "Fundamentals of Applied Probability and Random Processes", Elsevier,1st Indian Reprint, 2007.

REFERENCE BOOKS

- 1. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 2. Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.
- 3. Papoulis, A. and Unnikrishnapillai, S.,"Probability, Random Variables and Stochastic Processes", McGraw Hill Education India, 4th Edition, New Delhi, 2010.
- 4. Ross, S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 3rd Edition, Elsevier, 2004.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan, R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 2004.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 8th Edition, 2007.

COURSE OUTCOMES

Upon completion of the course, students will be able to:

CO1	Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon
CO2	Understand the basic concepts of one and two dimensional random variables and apply in engineering Applications.
CO3	Apply the concept of random processes in engineering disciplines.
CO4	Apply the basic concepts of statistical quality control.
CO5	Have the notion of sampling distributions and statistical techniques used in engineering and management problems.

COs		PROGRAM OUTCOMES (POs)												GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	-	-	-	-	-	2	3	-	1	3	-
CO2	3	2	2	-	-	-	-	-	1	2	-	1	3	-
CO3	3	3	3	-	-	-	-	-	2	2	-	1	3	-
CO4	3	2	2	-	-	-	-	-	2	1	-	2	2	-
CO5	3	3	2	-	-	-	-	-	2	2	-	2	3	-

ME4401

STRENGTH OF MATERIALS

L	T	P	C
3	0	0	3

OBJECTIVES

- ❖ To understand the concepts of stress, strain, principal stresses and principal planes.
- ❖ To study the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses.
- ❖ To determine stresses and deformation in circular shafts and helical spring due to torsion.
- ❖ To compute slopes and deflections in determinate beams by various methods.
- To study the stresses and deformations induced in thin and thick shells.

UNIT I	STRESS, STRAIN AND DEFORMATION OF SOLIDS	9
•	d deformable solids – Tension, Compression and Shear Stresses - Deformation of simple bars – Thermal stresses – Elastic constants - Volumetric strains – Stresses on inclined	CO1
UNIT II	TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM	9
Cantilever, Sim	s - Transverse loading on beams – Shear force and Bending moment in beams – aply supported and over hanging beams. Theory of simple bending – Bending stress Load carrying capacity – Proportioning of sections – Flitched beams – Shear stress	CO2
UNIT III	TORSION	9
moment and tors	on – Stresses and Deformations in Solid and Hollow Circular Shafts – Combined bending sion of shafts - Power transmitted to shaft – Shaft in series and parallel – Closed and Open prings – springs in series and parallel.	CO3
UNIT IV	DEFLECTION OF BEAMS	9
moment method	Governing differential equation - Double integration method - Macaulay's method - Area - Conjugate beam method for computation of slope and deflection of determinant beams. es and principal planes - Mohr's circle of stress.	CO4
UNIT V	THIN CYLINDERS, SPHERES AND THICK CYLINDERS	9
Deformation in	cylindrical shell due to internal pressure - circumferential and longitudinal stresses - thin cylinders - Spherical shells subjected to internal pressure - Deformation in - Thick cylinders - Lame's theory.	CO5
	TOTAL: 45 PER	IODS

TEXTBOOKS

- 1. Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New Delhi, 7th edition, 2018.
- 2. R. C. Hibbeler, Kai Beng Yap, Mechanics of Materials, The Tenth SI Edition Pearson Education Limited 2018

REFERENCE BOOKS

- 1. Rattan S.S., "Strength of Materials", Tata McGraw Hill Education Pvt .Ltd., New Delhi, 2017.
- 2. Singh. D.K., "Strength of Materials", Ane Books Pvt Ltd., New Delhi, 2021.
- 3. Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2015.
- 4. Beer. F.P. & Johnston. E.R. "Mechanics of Materials", Tata McGraw Hill, 8th Edition, New Delhi 2019.
- 5. Vazirani. V.N, Ratwani. M.M, Duggal .S.K "Analysis of Structures: Analysis, Design and
- 6. Detailing of Structures-Vol.1", Khanna Publishers, New Delhi 2014.

COURSE OUTCOMES

Upon completion of the course, students will be able to:

CO1	Understand the concepts of stress and strain in simple and compound bars, the importance of principal stresses and principal planes.
CO2	Understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.
CO3	Apply basic equation of torsion in designing of shafts and helical springs
CO4	Calculate slope and deflection in beams using different methods.
CO5	Analyze thin and thick shells for applied pressures.

COs		PROGRAM OUTCOMES (POs)												GRAM CIFIC COMES GOs)
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	PSO1	PSO2
CO1	3	3	3	3	2	3	1	3	2	3	1	3	3	2
CO2	3	3	3	3	2	3	1	3	2	3	1	3	3	2
CO3	3	3	3	3	2	3	1	3	2	3	1	3	3	2
CO4	3	3	3	3	2	3	1	3	2	3	1	3	3	2
CO5	3	3	3	3	2	3	1	3	2	3	1	3	3	2

ME 4402	THERMAN ENGINEERING	L	T	P	C
ME4402	THERMAL ENGINEERING	3	0	0	3

COURSE OBJECTIVES:

- ❖ To learn the concepts and laws of thermodynamics to predict the operation of thermodynamic cycles and performance of Internal Combustion(IC) engines and Gas Turbines.
- ❖ To analyzing the performance of steam nozzle, calculate critical pressure ratio
- ❖ To Evaluating the performance of steam turbines through velocity triangles, understand the need for governing and compounding of turbines
- ❖ To analyzing the working of IC engines and various auxiliary systems present in IC engines
- To evaluating the various performance parameters of IC engines

UNIT I	THERMODYNAMIC CYCLES	9
Air Standard C	ycles – Carnot, Otto, Diesel, Dual, Brayton – Cycle Analysis and its Performance Calculations	CO1
UNIT II	STEAM NOZZLES AND INJECTOR	9
	pes of nozzles, Flow of steam through nozzles, Critical pressure ratio, Variation of mass flow ure ratio. Effect of friction. Metastable flow.	CO2
UNIT III	STEAM AND GAS TURBINES	9
conditions. Mu	e and reaction principles, Velocity diagrams, Work done and efficiency – optimal operating alti-staging, compounding and governing. Gas turbine cycle analysis – open and closed cycle. In the improvement - Regenerative, Intercooled, Reheated cycles and their combination.	CO3
UNIT IV	INTERNAL COMBUSTION ENGINES – FEATURES AND COMBUSTION	9
diagrams, p-v o and performan	assification, working, components and their functions. Ideal and actual: Valve and port timing diagrams- two stroke & four stroke, and SI & CI engines – comparison. Geometric, operating, ce comparison of SI and CI engines. Desirable properties and qualities of fuels. Air-fuel ratio an and rich mixtures. Combustion in SI & CI Engines – Knocking – phenomena and control.	CO4
UNIT V	INTERNAL COMBUSTION ENGINE PERFORMANCE AND AUXILIARY SYSTEMS	9
Multipoint Fu	and Emission Testing, Performance parameters and calculations. Morse and Heat Balance tests. Lel Injection system and Common rail direct injection systems. Ignition systems – Magneto, electronic. Lubrication and Cooling systems. Concepts of Supercharging and Turbocharging – Lines of Supercharging and Turbocharging – Lines of Supercharging and Turbocharging – Lines of Supercharging and Supercharging and Supercharging – Lines of Supercharging – Lines of Supercharging and Supercharging – Lines of Supercharging	CO

TOTAL: 45 PERIODS

TEXTBOOKS

- 1.Mahesh. M. Rathore, "Thermal Engineering", 1st Edition, Tata McGraw Hill, 2010.
- 2. Ganesan.V, "Internal Combustion Engines" 4th Edition, Tata McGraw Hill, 2012.

- 1. Ballaney. P, "Thermal Engineering", 25th Edition, Khanna Publishers, 2017.
- 2. Domkundwar, Kothandaraman, &Domkundwar, "A Course in Thermal Engineering", 6th Edition, Dhanpat Rai& Sons, 2011.
- 3. Gupta H.N, "Fundamentals of Internal Combustion Engines", 2nd Edition Prentice Hall of India, 2013.
- 4. Mathur M.L and Mehta F.S., "Thermal Science and Engineering", 3rd Edition, Jain Brothers Pvt. Ltd, 2017.
- 5. Soman. K, "Thermal Engineering", 2nd Edition, Prentice Hall of India, 2011

	COURSE OUTCOMES Upon completion of the course, students will be able to						
CO1	oply thermodynamic concepts to different air standard cycles and solve problems						
CO2	o solve problems in steam nozzle and calculate critical pressure ratio.						
соз	Explain the flow in steam turbines, draw velocity diagrams, flow in Gas turbines and solve problems.						
CO4	Explain the functioning and features of IC engine, components and auxiliaries.						
CO5	Calculate the various performance parameters of IC engines						

COs	PROGRAM OUTCOMES (POs)												SPE(ROGRAM PECIFIC UTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1 PSO2		
CO1	3	2	1	1	-	ı	ı	ı	-	-	-	1	2	2	
CO2	3	2	2	1	-	-	-	-	-	-	-	1	2	2	
CO3	3	2	2	1	-	-	-	-	-	-	-	1	2	2	
CO4	3	2	1	1	-	-	-	-	-	-	-	1	2	2	
CO5	3	2	1	1	-	-	-	-	-	-	-	1	2	2	

ME4403	HYDRAULICS AND PNEUMATICS	L	T	P	C				
		3	0	0	3				
OBJECTIVES									
❖ 1. To provide the knowledge on the working principles of fluid power systems.									
 2. To study the fluids and components used in modern industrial fluid power system. 									
❖ 3. To deve	lop the design, construction and operation of fluid power circuits.								
❖ 4. To learn	the working principles of pneumatic power system and its components.								
❖ 5. To prov	ide the knowledge of trouble shooting methods in fluid power systems.								
UNIT I	FLUID POWER PRINICIPLES AND HYDRAULIC PUMP				9				
Introduction to Flu	id power – Advantages and Applications – Fluid power systems – Types of flu	ids	-						
Properties of fluids	and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Fri	ctio	n los	ss –					
Work, Power and	Forque- Problems, Sources of Hydraulic power: Pumping Theory— Pump Clas	sific	catio	n –					
Construction, World	king, Design, Advantages, Disadvantages, Performance, Selection criteria of p	ump	s –		CO1				
Fixed and Variable	e displacement pumps – Problems.								
UNIT II	HYDRAULIC ACTUATORS AND CONTROL COMPONENTS				9				
Hydraulic Actuato	rs: Cylinders – Types and construction, Application, Hydraulic cushioning –	Rot	ary						
Actuators-Hydraul	ic motors - Control Components: Direction Control, Flow control and pres	sure	e coi	ntrol	CO2				
	Construction and Operation – Accessories: Reservoirs, Pressure Switches – F	ilteı	s –t	ypes	CO2				
and selection- Ap	plications – Fluid Power ANSI Symbols – Problems								
UNIT III	HYDRAULIC CIRCUITS AND SYSTEMS				9				
Accumulators, Int	ensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Dou	ıble-	Pun	ıp,					
Pressure Intensifie	r, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed	Cont	trol,						
Deceleration circu	its, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydrauli	c ci	rcui	ts, –	CO2				
Servo and Proport	ional valves – Applications- Mechanical, hydraulic servo systems.				CO3				
UNIT IV	PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS				9				
Properties of air -	-Air preparation and distribution – Filters, Regulator, Lubricator, Muffler,	Aiı	. cor	ntrol					
Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit -classification- single									
cylinder and multi cylinder circuits-Cascade method -Integration of fringe circuits, Electro Pneumatic									
System – Elements – Ladder diagram – timer circuits-Problems, Introduction to fluidics and pneumatic logic									
circuits.									
UNIT V	TROUBLE SHOOTING AND APPLICATIONS				9				
Installation, Select	ion, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneuma	atic	syste	ems,					
Conditioning of hydraulic fluids Design of hydraulic circuits for Drilling, Planning, Shaping, Surface									

TOTAL: 45 PERIODS

CO5

grinding, Press and Forklift applications- mobile hydraulics; Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low-cost Automation – Hydraulic and Pneumatic power

Note: (Use of standard Design Data Book is permitted in the University examination)

packs, IOT in Hydraulics and pneumatics

TEXTBOOKS

- Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2009.
- Shanmugasundaram.K, "Hydraulic and Pneumatic Controls". Chand & Co, 2006.

REFERENCE BOOKS

- 1. James A. Sullivan, "Fluid Power Theory and Applications", Fourth Edition, Prentice Hall, 199
- 2. Jagadeesha. T., "Pneumatics Concepts, Design and Applications", Universities Press, 2015.
- 3. Joshi.P., Pneumatic Control", Wiley India, 2008.
- 4. Majumdar, S.R., "Oil Hydraulics Systems Principles and Maintenance", TataMcGraw Hill, 2001.
- 5. Shanmugasundaram.K., "Hydraulic and Pneumatic Controls". Chand & Co, 2006.
- 6. Srinivasan.R., "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 3rd edition,2019.

COURSE OUTCOMES

Upon	on completion of the course, students will be able to						
CO1	Apply the working principles of fluid power systems and hydraulic pumps.						
CO2	Apply the working principles of hydraulic actuators and control components.						
CO3	Design and develop hydraulic circuits and systems.						
CO4	Apply the working principles of pneumatic circuits and power system and its components.						
CO5	Identify various troubles shooting methods in fluid power systems						

	MAPPING OF COs WITH POs AND PSOs														
COs		PROGRAM OUTCOMES (POs) PROGRAM OUTCOMES (POs) PROGRA SPECIFIC OUTCOM (PSOs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	3	2	-	-	-	-	-	-	-	2	2	-	
CO2	2	2	3	2	-	-	-	-	-	-	-	2	2	-	
CO3	2	2	3	2	-	-	-	-	-	-	-	2	2 -		
CO4	2	2	3	2	-	-	-	-	-	-	-	2	2 -		
CO5	2	2	3	2	-	-	-	-	-	-	-	2	2	-	

T /T	F.4404
IVI	H.41411141

METAL CUTTING AND MACHINE TOOLS

L	T	P	C
3	0	0	3

OBJECTIVES

- To study the concepts and basic mechanics of metal cutting and the factors affecting machinability
- ❖ To learn working of basic and advanced turning machines.
- To teach the basics of machine tools with reciprocating and rotating motions and abrasive finishing processes.
- To study the basic concepts of CNC of machine tools and constructional features of CNC.
- To learn the basics of CNC programming concepts to develop the part programme for Machine centre and turning centre.

UNIT I	MECHANICS OF METAL CUTTING	9				
Mechanics of	chip formation, forces in machining, Types of chip, cutting tools – single point cutting tool					
	orthogonal and oblique metal cutting, thermal aspects, cutting tool materials, tool wear, tool	CO1				
life, surface fi	nish, cutting fluids and Machinability.					
UNIT II	TURNING MACHINES	9				
Centre lathe, c	onstructional features, specification, operations – taper turning methods, thread cutting methods,					
Capstan and	special attachments, surface roughness in turning, machining time and power estimation. Special lathes - Capstan and turret lathes- tool layout – automatic lathes: semi-automatic – single spindle: Swiss type, automatic screw type – multi spindle					
UNIT III	RECIPROCATING MACHINE TOOLS	9				
Reciprocating	machine tools: shaper, planer, slotter: Types and operations- Hole making: Drilling, reaming,					
boring, tappin	g, type of milling operations-attachments- types of milling cutters- machining time calculation					
- Gear cutting	gear hobbing and gear shaping – gear finishing methods Abrasive processes: grinding wheel –	CO3				
specifications	and selection, types of grinding process - cylindrical grinding, surface grinding, centreless					
grinding, inter	nal grinding - micro finishing methods					
UNIT IV	CNC MACHINES	9				
Computer Nu	merical Control (CNC) machine tools, constructional details, special features - Drives,					
Recirculating	ball screws, tool changers; CNC Control systems - Open/closed, point-to-point/continuous -					
Turning and n	nachining centres – Work holding methods in Turning and machining centres, Coolant systems,	CO4				
Safety feature	s.					
UNIT V PROGRAMMING OF CNC MACHINE TOOLS						
Coordinates, a	xis and motion, Absolute vs Incremental, Interpolators, Polar coordinates, Program planning, G					
and M codes,	Manual part programming for CNC machining centers and Turning centers - Fixed cycles,	GO.				
Loops and sub	proutines, Setting up a CNC machine for machining.	CO5				
	TOTAL: 45 PER	IODS				

TEXTBOOKS

- 1. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India,7th Edition, 2018.
- 2. Michael Fitzpatrick, Machining and CNC Technology, McGraw-Hill Education; 4th edition, 2018.

- 1. Roy. A. Lindberg, Processes and materials of manufacture, PHI / Pearson education, 2006.
- 2. Geofrey Boothroyd, "Fundamentals of Metal Machining and Machine Tools", McGraw Hill, 1984.
- 3. Rao. P.N "Manufacturing Technology," Tata McGraw-Hill, New Delhi, 2009.
- 4. A. B. Chattopadhyay, Machining and Machine Tools, Wiley, 2nd edition, 2017.

	COURSE OUTCOMES						
Upon	Upon completion of the course, students will be able to						
	Apply the mechanism of metal removal process and to identify the factors involved in improving machinability.						
CO2	Describe the constructional and operational features of centre lathe and other special purpose lathes.						
соз	Describe the constructional and operational features of reciprocating machine tools.						
CO4	Apply the constructional features and working principles of CNC machine tools.						
CO5	Demonstrate the Program CNC machine tools through planning, writing codes and setting up CNC machine tools to manufacture a given component.						

COs	PROGRAM OUTCOMES (POs)												SPEC OUTC	GRAM CIFIC COMES GOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO1 PSO2			
CO1	3	3	3	1	1	1	3	-	-	3	-	2	2	1			
CO2	3	3	3	1	1	1	3	-	-	3	-	2	2	1			
CO3	3	3	3	1	1	1	3	-	-	3	-	2	2	1			
CO4	3	3	3	1	1	1	3	-	-	3	-	2	2	1			
CO5	3	3	3	1	1	1	3	-	-	3	-	2	2	1			

ME4405	METROLOGY AND MEASUREMENTS	L	T	P	С			
		3	0	0	3			
 2 To teac 3 To stud 4 To dev 	 1 To learn basic concepts of the metrology and importance of measurements. 2 To teach measurement of linear and angular dimensions assembly and transmission elements. 3 To study the tolerance analysis in manufacturing. 4 To develop the fundamentals of GD & T and surface metrology. 							
UNIT I	BASICS OF METROLOGY				9			
in Measuremen Estimation of U	Need, Process, Role in quality control; Factors affecting measurement - SW ats - Types - Control - Measurement uncertainty - Types, Estimation, Procertainty, Statistical analysis of measurement data, Measurement system neasuring instruments, Principle of air gauging- ISO standards.	oble	ems	on				
	MEASUREMENT OF LINEAR, ANGULAR DIMENSIONS, ASSEMBLY A	AND)		9			
Linear Measuri advantages; Op Angular measu Pitch Diameter	ng Instruments – Gauge blocks – Use and precautions, Comparators – Woto-mechanical measurements using measuring microscope and Profile ring instruments – Measurement of Screw threads - Single element measurement, Lead, Pitch. Measurement of Gears – purpose – Analytical measurement Tooth profile, Tooth thickness, Lead – Functional checking – Rolling gear	proj uren – R	ecto nent Runc	s –	CO2			
UNIT III	TOLERANCE ANALYSIS				9			
Fits, Problems	terchangeability, Selective assembly, Tolerance representation, Terminology, (using tables IS919); Design of Limit gauges, Problems. Tolerance a Process capability, tolerance stackup, tolerance charting.			in	CO3			
UNIT IV	METROLOGY OF SURFACES				9			
deviations like s finish – Function	of GD & T- Conventional vs Geometric tolerance, Datums, Inspection of straightness, flatness, roundness deviations; Simple problems – Measurement onality of surfaces, Parameters, Comparative, Stylus based and Optical Mers, Introduction to 3D surface metrology-Parameters.	of S	Surf	ace	CO4			
UNIT V	ADVANCES IN METROLOGY				9			
Lasers in metrology - Advantages of lasers – Laser scan micrometers; Laser interferometers – Applications – Straightness, Alignment; Ball bar tests, Computer Aided Metrology - Basic concept of CMM – Types of CMM – Constructional features – Probes – Accessories – Software – Applications – Multi-sensor CMMs. Machine Vision - Basic concepts of Machine Vision System – Elements – Applications - On-line and in-process monitoring in production – Computed tomography – White light Scanners.								
TOTAL: 45 PERIOR								

TEXTBOOKS

- 1. Gupta. I.C., "Engineering Metrology", Dhanpatrai Publications, 2005.
- 2. Jain R.K. "Engineering Metrology", Khanna Publishers, 2009.

REFERENCE BOOKS

- 1. Dotson Connie, "Dimensional Metrology", Cengage Learning, First edition, 2012.
- 2. Mark Curtis, Francis T. Farago, "Handbook of Dimensional Measurement", Industrial Press, Fifth Edition 2013.
- 3. AmmarGrous, J "Applied Metrology for Manufacturing Engineering", Wiley-ISTE, 2011.
- 4.Galyer, J.F.W. Charles Reginald Shotbolt, "Metrology for Engineers", Cengage Learning EMEA; 5th revised edition, 1990.
- 5. Raghavendra N.V. and Krishnamurthy. L., Engineering Metrology and Measurements, Oxford University Press, 2013.

COUI	COURSE OUTCOMES							
Upon	Upon completion of the course, students will be able to							
CO1	CO1 Discuss the concepts of measurements to apply in various metrological instruments.							
CO2	Apply the principle and applications of linear and angular measuring instruments, assembly and transmission elements.							
CO3	Apply the tolerance symbols and tolerance analysis for industrial applications.							
CO4	4 Apply the principles and methods of form and surface metrology.							
CO5	Apply the advances in measurements for quality control in manufacturing Industries.							

COs	PROGRAM OUTCOMES (POs) COs												PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	2	-	2	-	-	-	-	-	3	3	-	
CO2	3	2	2	2	-	2	-	-	-	-	-	3	3	-	
CO3	3	2	2	2	-	2	-	-	-	-	-	3	3	-	
CO4	3	2	2	2	-	2	-	-	-	-	-	3	3	-	
CO5	3	2	2	2	-	2	-	-	_	-	-	3	3	-	

ME4406

STRENGTH OF MATERIALS AND FLUID MECHANICS AND MACHINERY LABORATORY

L	T	P	C
0	0	4	2

OBJECTIVES

- * To study the mechanical properties of materials when subjected to different types of loading.
- * To verify the principles studied in Fluid Mechanics theory by performing experiments in lab.

STRENGTH OF MATERIALS LABORATORY

LIST OF EXPERIMENTS	
1. Tension test on a mild steel rod	
2. Double shear test on Mild steel and Aluminium rods	CO1
3. Torsion test on mild steel rod	
4. Impact test on metal specimen	
5. Hardness test on metals - Brinnell and Rockwell Hardness Number	CO2
6. Deflection test on beams	
7. Compression test on helical springs	
8. Strain Measurement using Rosette strain gauge	CO3
9. Effect of hardening- Improvement in hardness and impact resistance of steels.	CO2
 10. Microscopic Examination of Hardened samples and Hardened and tempered samples. 	CO3
TOTAL: 30 PE	ERIODS
FLUID MECHANICS AND MACHINES LABORATORY	
LIST OF EXPERIMENTS	
1. Determination of the Coefficient of discharge of given Orifice meter.	
2. Determination of the Coefficient of discharge of given Venturi meter	CO4
3. Calculation of the rate of flow using Rota meter.	CO4
4. Determination of friction factor for a given set of pipes.	<u> </u>
5. Conducting experiments and drawing the characteristic curves of centrifugal pump / submergible pump	
	_
pump	CO5
pump 6. Conducting experiments and drawing the characteristic curves of reciprocating pump.	CO5

TOTAL: 30 PERIODS

9. Conducting experiments and drawing the characteristics curves of Francis turbine.

10. Conducting experiments and drawing the characteristic curves of Kaplan turbine.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Determine the tensile, torsion and shear properties of metals by testing
CO2	Determine the impact, hardness and deflection properties of metals by testing
	Determine the stiffness properties of helical spring, strain measurement and microscopic analysis of metal samples.
CO4	Apply the conservation laws to determine the coefficient of discharge of a venturimeter, Orifice meter, Rotameter and finding the friction factor of given pipe
CO5	Determine the performance characteristics of turbine, roto-dynamic pump and positive displacement pump.

COs				Pl	ROGRA	AM OU	JTCOM	IES (P	Os)				PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	-	-	_	1	2	2	3	3	-	2	3	2	
CO2	3	1	-	-	-	1	2	2	3	3	-	2	3	2	
CO3	3	1	-	-	-	1	2	2	3	3	-	2	3	2	
CO4	3	1	-	-	-	1	2	2	3	3	-	2	3	2	
CO5	3	1	_	-	_	1	2	2	3	3	-	2	3	2	

 ME4407
 INTERNAL COMBUSTION ENGINEERING LABORATORY
 L
 T
 P
 C

 0
 0
 4
 2

COURSE OBJECTIVES:

- ❖ To study the value timing-V diagram and performance of IC Engines
- ❖ To Study the characteristics of fuels/Lubricates used in IC Engines
- ❖ To study the Performance of steam generator/ turbine

LIST OF EXPERIMENTS I.C. ENGINE LAB

- 1. Valve Timing and Port Timing diagrams.
- 2. Actual p-v diagrams of IC engines.
- 3. Performance Test on 4 stroke Diesel Engine.
- 4. Heat Balance Test on 4 stroke Diesel Engine
- 5. Morse Test on Multi-cylinder Petrol Engine.
- 7. Retardation Test on a Diesel Engine.
- 8. Determination of Flash Point and Fire Point of various fuels / lubricants.
- 9. Performance test on a two stage Reciprocating Air compressor

STEAM LAB

- 1. Study on Steam Generators and Turbines.
- 2. Performance and Energy Balance Test on a Steam Generator.
- 3. Performance and Energy Balance Test on Steam Turbine.

TOTAL: 60 PERIODS

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

S. No	Name of the Equipment	Qty
1	I.C Engine – 2 stroke and 4 stroke model	1 Set
2	Apparatus for Flash and Fire point	1 No.
3	4-stroke Diesel Engine with mechanical loading	1 No.
4	4-stroke Diesel Engine with hydraulic loading	1 No.
5	4-stroke Diesel Engine with electrical loading	1 No.
6	Multi-Cylinder Petrol Engine	1 No.
7	Single Cylinder Petrol Engine	1 No.
8	Data Acquisition system with any one of the above engines	1 No.
9	Steam Boiler with turbine setup	1 No.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Conduct tests to evaluate performance characteristics of IC engines
CO2	Conduct tests to evaluate the performance of refrigeration cycle
CO3	Conduct tests to evaluate Performance and Energy Balance on a Steam Generator.

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	1	-	-	-	-	1	-	-	1	1	1
CO2	2	2	1	1	-	-	-	-	1	-	-	1	1	1
CO3	2	2	1	1	-	-	-	-	1	-	-	1	1	1

ME4408

MACHINE TOOLS LABORATORY

L	T	P	C
0	0	4	2

OBJECTIVES

To Study and acquire knowledge on various basic Machining Operations in special purpose machines and its applications in real life manufacture of components in the industry.

List of Experiments

- 1. Contour milling using vertical milling machine
- 2. Spur gear cutting in milling machine
- 3. Helical Gear Cutting in milling machine
- 4. Gear generation in hobbing machine
- 5. Gear cutting in gear shaping machine
- 6. Square Head shaping
- 7. Plain Surface grinding
- 8. Cylindrical grinding
- 9. Centreless grinding
- 10. Tool angle grinding with tool and Cutter Grinder
- 11. Measurement of cutting forces in Milling / Turning Process
- 12. CNC Part Programming

	LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS										
Sl. No.	Name of the Equipment	Qty.									
1.	Centre Lathes	7 Nos									
2.	Turret and Capstan Lathes	1 Nos									
3.	Horizontal Milling Machine	2 Nos									
4.	Vertical Milling Machine	2 Nos									
5.	Surface Grinding Machine	1 Nos									
6.	Cylindrical Grinding Machine	1 Nos									
7.	Centreless Grinding Machine	1 Nos									
8.	Tool and Cutter Grinder	1 Nos									
9.	Lathe tool Dynamometer	1 Nos									
10.	Milling tool Dynamometer	1 Nos									
11.	Gear Hobbing Machine	1 Nos									
12.	Tool Makers Microscope	1 Nos									
13.	CNC Lathe	1 Nos									
14.	CNC Milling	1 Nos									
15.	Gear Shapping Machine	1 Nos									

TOTAL: 60 PERIODS

COUI	RSE OUTCOMES
Upon	completion of the course, students will be able to
CO1	The students will be able to use different machine tools used in the process of milling, finishing operations, manufacture of Gears and to manufacture tools using cutter grinder
CO2	Develop CNC part programming

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	-	-	3	-	1	-	-	-	-	1	2	2	-	
CO2	-	-	-	3	-	1	-	-	-	-	1	2	2	-	
CO3	-	-	-	3	-	1	-	-	-	-	1	2	2	-	
CO4	-	-	-	3	-	1	-	-	-	-	1	2	2	-	
CO5	-	-	-	3	-	1	-	-	-	-	1	2	2	-	

NATE 4504	DESIGN OF MACHINE ELEMENTS	L	T	P	C
ME4501	DESIGN OF MACHINE ELEMENTS	3	1	0	4

OBJECTIVES

- To learn the various steps involved in the Design Process.
- ❖ To learn designing shafts and couplings for various applications.
- To learn the design of temporary and permanent Joints.
- To learn designing helical, leaf springs, flywheels, connecting rods and crank shafts for various applications.
- ❖ To learn designing and select sliding and rolling contact bearings, seals and gaskets. (Use of PSG Design Data book is permitted)

(886.9	1 1 3 5 Design Data book is permitted)	
UNIT I	FUNDAMENTAL CONCEPTS IN DESIGN	12
mechanical proposed safety - Combet theories of fails	the design process - factors influencing machine design, selection of materials based on perties - Preferred numbers - Direct, Bending and torsional loading- Modes of failure - Factor bined loads - Principal stresses - Eccentric loading - curved beams - crane hook and 'C' frame - ure - Design based on strength and stiffness - stress concentration - Fluctuating stresses - t - Design for finite and infinite life under variable loading - Exposure to standards.	
UNIT II	DESIGN OF SHAFTS AND COUPLINGS	12
	es - Design of solid and hollow shafts based on strength, rigidity and critical speed - Keys and and flexible couplings.	CO2
UNIT III	DESIGN OF TEMPORARY AND PERMANENT JOINTS	12
Fillet and paralle	ers - Bolted joints including eccentric loading, Knuckle joints, Cotter joints - Welded joints. Butt, el transverse fillet welds - welded joints subjected to bending, torsional and eccentric loads, riveted res - theory of bonded joints.	
UNIT IV	DESIGN OF ENERGY STORING ELEMENTS AND ENGINE COMPONENTS	12
springs - Flywhe	s, design of helical and concentric springs- surge in springs, Design of laminated springs - rubber rels considering stresses in rims and arms for engines and punching machines - Solid and Rimmed ecting rods and crank shafts.	CO
UNIT V	DESIGN OF BEARINGS AND MISCELLANEOUS ELEMENTS	12
	and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi Selection of Rolling Contact bearings - Design of Seals and Gaskets.	CO
	TOTAL: 60 PER	IODS

TEXTBOOKS

- 1. Bhandari V B, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016.
- 2. Joseph Shigley, Richard G. Budynas and J. Keith Nisbett "Mechanical Engineering Design", 10th Edition, Tata McGraw-Hill, 2015.

- 1. Ansel C Ugural, "Mechanical Design An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2004.
- 2. Merhyle Franklin Spotts, Terry E. Shoup, and Lee Emrey Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2004.
- 3. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine component Design", 6th Edition, Wiley, 2017.
- 4. Sundararajamoorthy T. V. and Shanmugam N, "Machine Design", Anuradha Publications, Chennai, 2003.
- $5.\ Design\ of\ Machine\ Elements\ |\ SI\ Edition\ |\ Eighth\ Edition\ |\ By\ Pearson\ by\ M.\ F.\ Spotts,\ Terry\ E.\ Shoup,\ et\ al.\ |\ 25\ March\ 2019$

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Explain the design machine members subjected to static and variable loads.
CO2	Apply the concepts design to shafts, key and couplings.
CO3	Apply the concepts of design to bolted, Knuckle, Cotter, riveted and welded joints.
CO4	Apply the concept of design helical, leaf springs, flywheels, connecting rods and crank shafts.
CO5	Apply the concepts of design and select sliding and rolling contact bearings, seals and gaskets.

COs		PROGRAM OUTCOMES (POs)									PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									PSO1	PSO2		
CO1	2	2	3	-	-	-	-	1	1	-	-	2	3	2
CO2	2	2	3	-	-	-	-	1	1	-	-	2	3	2
CO3	2	2	3	-	-	-	-	1	1	-	-	2	3	2
CO4	2	2	3	-	-	-	-	1	1	-	-	2	3	2
CO5	2	2	3	-	-	-	-	1	1	-	-	2	3	2

N. 4502	THEODY OF MACHINES	L	T	P	C				
ME4502	THEORY OF MACHINES	3	0	0	3				
COURSE OBJECTIVES:									
To provide the transfer of	❖ To provide the knowledge of basics of mechanism, machines and its velocity and acceleration analysis								

To provide the knowledge of kinematics of cam and gear mechanism

❖ To provide the knowledge of force analysis and balancing

❖ To provide the knowledge of basics of vibration and forced vibration and its control	
UNIT I BASICS OF MECHANICSM AND KINEMATIC ANALYSIS	9
Basics of Mechanisms – Terminology and definitions – Degrees of freedom – Kinemati bar and slide crank chain – Kinematics analysis in simple mechanisms using relative Velocity and Acceleration polygons– Graphical Method.	
UNIT II KINEMATICS OF CAMS, GEARS & GEAR TRAINS	9
Cams – Classifications – Displacement diagrams - Layout of plate cam profiles – De motion. Spur gear – Law of toothed gearing – Involute gearing – Gear Tooth actio undercutting in Involute Gears - Gear trains – Parallel axis gears trains – Simple Epicycl	on - Interference and CO
UNIT III DYNAMIC FORCE ANALYSIS AND BALANCING OF ROTAT	ΓING MASS 9
Dynamic force analysis – Inertia force - D Alembert's principle –Dynamic Analysis in re – Gas forces - Bearing loads – Crank shaft torque - Balancing of Rotating masses – Balamass rotating in different planes – Applications – Balancing machines	1 0 0
UNIT IV FREE VIBRATION ANALYSIS	9
Free vibrations – Equations of motion – Natural Frequency – Free Vibration subjected to multiple loading - Bending - Critical speed of simple shaft - Damped Vibration – Torsional vibration of geared system.	_
UNIT V FORCED VIBRATION AND GYROSCOPIC COUPLE	9
Response of one degree freedom systems to periodic forcing – Harmonic disturbances by unbalance – Support motion –transmissibility – Vibration isolation vibration measure Gyroscopic forces and torques – Gyroscopic stabilization – Gyroscopic effects in Au	ement. Gyroscopes – CO

TEXTBOOKS

airplanes.

- 1. Rattan, S.S, "Theory of Machines", 4th Edition, Tata McGraw-Hill, 2014.
- 2. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 4th Edition, Oxford University Press, 2014.

TOTAL: 45 PERIODS

- 1. Cleghorn. W. L, "Mechanisms of Machines", Oxford University Press, 2014.
- 2. Khurmi, R.S.,"Theory of Machines", 14th Edition, S Chand Publications, 2005.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To study the basic components of mechanisms, analyzing the simple mechanism with respect to velocity and acceleration at any point in a link of a mechanism.
CO2	To study the basic kinematics of cam and gear mechanism
CO3	To study the force analysis on engine mechanism and balancing of rotating mass
CO4	To study the free vibration analysis of various mechanical systems
CO5	To study the forced vibration caused and to study the gyroscopic effects.

COs		PROGRAM OUTCOMES (POs)									PROG SPEC OUTC (PS	OMES		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	-	2	-	-	-	2	-	2	3	3
CO2	3	3	3	2	-	2	-	-	-	2	-	2	3	3
CO3	3	3	3	2	-	2	-	-	-	-	-	2	3	3
CO4	3	3	3	2	-	2	-	-	_	-	-	2	3	3
CO5	3	3	3	2	-	2	-	-	_	1	-	2	3	3

11. Experiment on motorized gyroscope.

12. Determination of critical speed of shafts.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS METROLOGY LABORATORY

Sl. No.	Name of the Equipment	Qty.
1.	Micrometer	5 Nos
2.	Vernier Caliper	5 Nos
3.	Vernier Height Gauge	2 Nos
4.	Vernier Depth Gauge	2 Nos
5.	Slip Gauge Set	1 Nos
6.	Gear Tooth Vernier	1 Nos
7.	Sine Bar	1 Nos
8.	Floating Carriage Micrometer	1 Nos
9.	Profile Projector / Tool Makers Microscope	1 Nos
10.	Mechanical / Electrical / Pneumatic Comparator	1 Nos
11.	Autocollimator	1 Nos
12.	Surface finish Measuring Equipment	1 Nos
13.	Bore Gauge	1 Nos
14.	Telescope Gauge	1 Nos

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS DYNAMICS LABORATORY

Sl. No.	Name of the Equipment	Qty.
1.	Cam follower setup	1No.
2.	Motorised gyroscope	1No.
3.	Governor apparatus – Watt, Porter, Proell and Hartnell governors	1No.
4.	Whirling of shaft apparatus	1No.
5.	Dynamic balancing machine	1No.
6.	Spring mass vibration system	1No.
7.	Torsional Vibration of single rotor system setup	1No.
8.	Gear Models	1No.
9.	Kinematic Models to study various mechanisms	1No.
10.	Turn table apparatus	1No.
11.	Transverse vibration setup of a) cantilever beam b)Simply supported beam	1No.

TOTAL: 60 PERIODS

COU	COURSE OUTCOMES				
Upon	n completion of the course, students will be able to				
CO1	The students able to calibrate instruments and to measure the gear tooth dimensions, angle using sine bar and straightness.				
	Determine mass moment of inertia of mechanical element, governor effort and range of Sensitivity, the natural frequency and damping coefficient, critical speeds of shafts.				

COs	PROGRAM OUTCOMES (POs)							PROG SPEC OUTC (PS	CIFIC OMES					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	2	2	3	-	2	2	-	-	-	2	2	3	2
CO2	-	2	2	3	-	2	2	-	-	-	2	2	3	2

		L	T	P	C		
ME4508	CAD CAM LABORATORY	0	0	4	2		
OBJECTIVES							
❖ To show t	he practical knowledge in handling 2D drafting and 3D modelling software syste	ems.					
To design the 3 - Dimensional geometric model of parts, sub-assemblies, assemblies and exporting it to drawing.							
❖ To explor	❖ To explore to the features of CNC Machine Tools.						
❖ To use the	e various types of to modern control systems (Fanuc)						
❖ To know t	To know the application of various CNC machines like CNC lathe, CNC Vertical Machining centre.						
3D GEOMETRIC MODELLING					30		
1. Introduction of 3D Modelling software							
Creation of 3D assembly model of following machine elements using 3D Modelling software							
2. Flange Coupling							

1. Introduction of 3D Modelling software	
Creation of 3D assembly model of following machine elements using 3D Modelling software	
2. Flange Coupling	
3. Plummer Block	
4. Screw Jack	CO1
5. Universal Joint	
6. Machine Vice	CO ₂
7. Stuffing box	
8. Connecting rod	
9. Piston	
10. Crankshaft	
ANUAL PART PROGRAMMING.	20
(i) Part Programming - CNC Machining Centre	
(a) Linear Cutting.	
(b) Circular cutting	
(c) Cutter Radius Compensation.	
(d) Canned Cycle Operations.	
(11) Part Programming - CNC Lurning Centre	CO3 CO4
(a) Straight, Taper and Radius Turning.	CO4
(b) Thread Cutting.	
(c) Rough and Finish Turning Cycle.	
(d) Drilling and Tapping Cycle	
THEN ON COMPUTED A PER PLOCE AND THE	10
TUDY ON COMPUTER AIDED PART PROGRAMMING	
TUDY ON COMPUTER AIDED PART PROGRAMMING (a) CL Data and Post process generation using CAM packages.	CO5

TOTAL: 60 PERIODS

TEXTBOOKS

1. Gopalakrishna K.R., —Machine Drawingl, 22nd Edition, Subhas Stores Books Corner, Bangalore, 2017

- 1. N. D. Bhatt and V.M. Panchal, —Machine Drawingl, 48th Edition, Charotar Publishers, 2016
- 2. Z. K.L. Narayana, P. Kannaiam and K. Venkata Reddy, Machine Drawing, published by New Age International Publishers, 2019.

COURSE OUTCOMES Upon completion of the course, students will be able to						
CO1	Explore to the different 3D modelling features available in the CAD System.					
CO2	Design the 3 - Dimensional geometric part and assembly models.					
CO3	Detail the 3 - Dimensional geometric model of parts, sub-assemblies, assemblies into to production drawings.					
CO4	Apply the fundamental working principle of CNC machine tools.					
CO5	Program using G & M Codes and simulate the CNC program. CO6 Generate part programming data through CAM software					

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S. No	Description of the Equipment	Quantity					
	Hardware						
1.	Computer Server	1 No					
2.	Computer nodes or systems s (High end CPU with at least 1 2. GB main memory) networked to the server	30 Nos					
3.	A3 size plotter	1 No					
4.	Laser Printer	1 No					
5.	CNC Lathe	1 No					
6.	CNC milling machine	1 No					
	Software						
7.	Any High-end integrated modeling and manufacturing CAD / CAM software	30 Nos					
8.	CAM Software for machining centre and turning centre (CNC Programming and tool path simulation for FANUC)	30 Nos					
9.	Licensed operating system	30					

N/E/4604		L	T	P	C		
ME4601	HEAT AND MASS TRANSFER	3	1	0	4		
OBJECTI	VES	•					
Unc	derstanding the steady and transient heat conduction.						
Comprehending the principles of convective heat transfer.							
 Outlining the facets of heat transfer for designing a heat exchanger 							

Inferring the fundamental concepts of radiation heat transfer.

❖ Ana	alyzing the relation between heat and mass transfer		
UNIT I	CONDUCTION	9+3	
General Diffe	erential equation – Cartesian, Cylindrical and Spherical Coordinates – One Dimensional Steady		
State Heat Co	onduction — plane and Composite Systems – Conduction with Internal Heat Generation		
Extended Sur	rfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite and Infinite Solids –Use	CO1	
of Heisler's o	charts.		
UNIT II	CONVECTION	9+3	
Conservation	Equations, Boundary Layer Concept – Forced Convection: External Flow – Flow over Plates,		
Cylinders Sp	heres and Bank of tubes. Internal Flow – Entrance effects. Free Convection –Flow over Vertical	CO2	
Plate, Horizo	ontal Plate, Inclined Plate, Cylinders and Spheres.		
UNIT III	PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS	9+3	
Nusselt's the	ory of condensation- Regimes of Pool boiling and Flow boiling, correlations in boiling and		
condensation	Heat Exchanger Types - Overall Heat Transfer Coefficient – Fouling Factors. LMTD and	CO3	
NTU method	ls. Introduction to TEMA Standards.		
UNIT IV	RADIATION	9+3	
Radiation laws, Black Body and Gray body Radiation. Shape Factor. Electrical Analogy. Radiation shields.			
***********	MASS TRANSFER	CO4	
UNIT V	WASS TRANSFER	9+3	

TEXTBOOKS

1. R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2009

TOTAL: 60 PERIODS

2. Yunus A. Cengel, "Heat Transfer A Practical Approach" – Tata McGraw Hill, 5thEdition –2013

REFERENCE BOOKS

1. Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2010

2. Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 2012

COURSE OUTCOMES Upon completion of the course, students will be able to						
CO1	Summarize the mechanism of heat conduction under steady and transient conditions.					
CO2	Elucidate the principles of convective heat transfer.					
CO3	Design a heat exchanger for any specific application					
CO4	Adopt the concept of radiation heat transfer in real time systems					
CO5	Develop solutions to problems involving combined heat and mass transfer					

COs	PROGRAM OUTCOMES (POs)									OUTC	GRAM CIFIC OMES Os)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	-	-	-	-	-	-	3	-	-
CO2	3	3	3	3	-	-	-	-	-	-	-	3	-	-
CO3	3	3	3	3	3	-	-	-	-	-	-	3	-	-
CO4	3	3	3	3	-	-	-	-	-	-	-	3	-	-
CO5	3	3	3	3	-	-	-	-	-	-	-	3	-	-

CCA	C DDOCD AMMING AND DAGICS OF DATA STRUCTURES	L	T	P	C	
CS4	C PROGRAMMING AND BASICS OF DATA STRUCTURES	3	0	0	3	
COUR	COURSE OBJECTIVES:					
*	To introduce the basics of C programming language.					
*	❖ To learn the concepts of advanced features of C.					
*	To learn the concepts of advanced features of C.					

To know the concepts of non-linear data structure and hashing.
To familiarize the concepts of sorting and searching techniques

		1			
UNIT I	BASICS OF C PROGRAMMING	9			
Data Types - Expressions –	o programming paradigms – Applications of C Language - Structure of C program - C programming: Constants – Enumeration Constants - Keywords – Operators: Precedence and Associativity - Input /Output statements, Assignment statements – Decision making statements - Switch statement tements – Preprocessor directives - Compilation process.	_			
UNIT II	ARRAYS, STRINGS AND FUNCTIONS	9			
Introduction to Arrays: Declaration, Initialization – One dimensional array – Two dimensional arrays - String operations: length, compare, concatenate, copy – linear and binary search. Modular programming - Function prototype, function definition, function call, Built-in functions (string functions, math functions) – Recursion, Binary Search using recursive functions.					
UNIT III	POINTERS	9			
by reference.	Pointers – Pointer operators – Arrays and pointers – Array of pointers – Parameter passing: Pass by value, Pass by reference. Pointer and Structures-Dynamic memory allocation-Files – Types of file processing: Sequential access, Random access – Sequential access file - Random access file - Command line arguments.				
UNIT IV	STACKS, QUEUES AND LISTS	9			
Linked list implementation – Singly linked lists – Circularly linked lists – Doubly-linked lists – Stack ADT – Operations – Applications – Infix to Postfix conversion – Function Calls – Queue ADT – Operations – Circular Queue – Dequeue.					
UNIT V	SEARCH TREES, SEARCHING, SORTING AND HASHING TECHNIQUES	9			
Minimum Spa	Tree – Types of Graphs – Breadth-first traversal – Depth-first traversal -Dijkstra's algorithm – anning Tree – Prim's algorithm – Kruskal's algorithm- Sorting – Selection sort – Insertion sort –. Hashing – Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extendible	CO5			

TOTAL: 45 PERIODS

TEXTBOOKS

Hashing

- 1. Reema Thareja, "Programming C", Second Edition, Oxford University Press, 2016.
- 2. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education, 1997.

Merge Sort – Hashing – Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extendible

- 1. "Fundamentals of data structure in C" Horowitz, Sahani & Freed, Computer Science Press.
- 2. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education,1983

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Develop C programs for any real world/technical application.
CO2	Apply advanced features of C in solving problems.
CO3	Write functions to implement linear and non-linear data structure operations.
CO4	Suggest and use appropriate linear/non-linear data structure operations for solving a given problem.
CO5	Appropriately use sort and search algorithms for a given application. And apply appropriate hash functions that result in a collision free scenario for data storage and retrieval.

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	3	3	1	1	3	0	0	2	1	-	-
CO2	2	1	1	1	1	0	3	3	1	1	2	1	-	-
CO3	1	2	2	0	0	3	1	0	3	1	1	3	-	-
CO4	3	1	2	2	0	0	1	3	1	3	1	1	-	-
CO5	2	1	1	1	2	0	3	0	1	1	3	1	-	-

CS4657

C PROGRAMMING AND DATA STRUCTURES LABORATORY

L	T	P	C
0	0	4	2

OBJECTIVES

- ❖ To introduce the basics of C programming language.
- ❖ Implement various basic data structures and its operations.
- ❖ Implement various sorting and searching algorithms.

LIST OF EXPERIMENTS

1. Basics

- a. Write a program to print sample strings like "hello world", "Welcome to C Programming" with different formats using escape sequences.
- b. Write a Program to demonstrate arithmetic operators. (+,-,*,/,%)
- c. Write a Program to demonstrate logical operators. (logical AND, logical OR).

2. Decision Statements

- a. Write a Program to read marks of a student in six subjects and print whether pass or fail (using if-else).
- b. Write a Program to calculate electricity bill.
- c. Write a Program to display names of days in a Week using switch case.
- d. Write a program to display multiplication tables from 1 to 10 except 3 and 5 using loops.

3. Arrays

- a. Write a program to store 10 elements in the 1-D array and print sum of the array.
- b. Write a program to count no. of positive numbers, negative numbers and zeros in the array.
- c. Write a program to search the given element by using linear search.
- d. Write a program to perform matrix multiplication by checking the compatibility.

4. Strings

- a. Write a program to verify the given string is palindrome or not (without built-in functions, with using built-in functions).
- b. Write a program to concatenate two strings using arrays.

CO₂

CO₁

5. Function

- a. Write a program to read values from keyboard and find the values using abs(),sqrt(),floor(),ceil()and pow().
- b. Write a program to find difference of two numbers using functions without arguments, with return type.
- c. Write a program to calculate factorial, gcd using recursion and non-recursion functions.
- d. Write a program which copies the contents of one file to another file using command line arguments.
- 6. Implementation of stacks using linked lists.
- 7. Implement stacks and queue.
- 8. Graph traversal
 - 1. DFS
 - 2. BFS
- 9. Implementation of minimum spanning tree

CO₃

10. Sorting Algorithm

- a. Selection sort
- b. Insertion sort
- c. Merge sort

TOTAL: 60 PERIODS

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Able to implement concepts of C programming
CO2	Ability to perform the basic data structure and its operations
CO3	Ability to solve minimum spanning tree

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	3	0	3	3	2	3	3	2	0	1	-	-	
CO2	3	2	3	1	2	3	0	3	2	3	0	1	-	-	
CO3	2	3	0	0	3	0	1	2	3	0	0	0	-	-	

ME4608

HEAT TRANSFER AND REFRIGERATION AND AIR-CONDITIONING LABORATORY

L	T	P	C
0	0	4	2

COURSE OBJECTIVES:

- ❖ To study the heat transfer phenomena, predict the relevant coefficient using implementation
- ❖ To study the performance of refrigeration cycle / components

LIST OF EXPERIMENTS - HEAT TRANSFER LAB

- 1. Thermal conductivity measurement of pipe insulation using lagged pipe apparatus.
- 2. Determination of heat transfer coefficient under natural convection from a vertical cylinder.
- 3. Determination of heat transfer coefficient under forced convection from a tube.
- 4. Determination of Thermal conductivity of composite wall.
- 5. Heat transfer from pin-fin apparatus (natural & priced convection modes)
- 6. Determination of Stefan Boltzmann constant.
- 7. Determination of emissivity of a grey surface.
- 8. Effectiveness of Parallel / counter flow heat exchanger.

REFRIGERATION AND AIR CONDITIONING LAB

- 1. Determination of COP of a refrigeration system
- 2. Performance test on a reciprocating air compressor
- 3. Performance test in Cooling Tower

TOTAL: 60 PERIODS

LIST OF E	QUIPMENTS FOR A BATCH OF 30 STUDENTS
S. No	Name of the Equipment
	·

S. No	Name of the Equipment	Qty
1	Lagged pipe apparatus	1 Set
2	Natural convection-vertical cylinder apparatus	1 No.
3	Forced convection inside tube apparatus	1 No.
4	Composite wall apparatus	1 No.
5	Pin-fin apparatus	1 No.
6	Stefan-Boltzmann apparatus	1 No.
7	Emissivity measurement apparatus	1 No.
8	Parallel/counter flow heat exchanger apparatus	1 No.
9	Refrigeration test rig	1 No
10	Air-conditioning test rig	1 No
11	HC Refrigeration System	1 No.
12	Fluidized Bed Cooling Tower	1 No

COURSE OUTCOMES

Upon completion of the course, students will be able to

	Ability to determine the thermal conductivity, heat transfer coefficient, Stefan Boltzmann constant and emissivity of a grey surface
CO2	Ability to determine the effectiveness of a heat exchanger

Ability to determine the COP of an AC and refrigeration system CO₃

COs		PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1	-	-	-	-	1	-	-	1	2	1	
CO2	3	2	1	1	-	-	-	-	1	-	-	1	2	1	
CO3	3	2	1	1	1	ı	1	-	1	-	ı	1	2	1	

M	E46	609

DESIGN AND FABRICATION PROJECT

L	T	P	C
0	0	4	2

OBJECTIVES

To give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.

The students in a group of 2 to 4 works on a topic approved by the Head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1 Use of design principles and develop conceptual and engineering design of any components.

Fabricate any components using different manufacturing tools and demonstrate the working model of the machine element or the mechanical product.

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	-	-	-	3	-	2	2	-	3	3
CO2	3	3	2	1	-	-	-	3	-	2	2	-	3	3

ME4701	MECHATRONICS	L	T	P	C
		3	0	0	3

OBJECTIVE

❖ To impart knowledge about the elements and techniques involved in Mechatronics systems which are very much essential to understand the emerging field of automation.

	T T T T T T T T T T T T T T T T T T T			
UNIT I	INTRODUCTION	12		
Introduction to Mechatronics – Systems – Concepts of Mechatronics approach – Need for Mechatronics				
- Emerging areas of Mechatronics - Classification of Mechatronics. Sensors and Transducers: Static and				
dynamic Charac	cteristics of Sensor, Potentiometers – LVDT – Capacitance sensors – Strain gauges –	CO1		
Eddy current se	nsor – Hall effect sensor – Temperature sensors – Light sensors			
UNIT II	8085 MICROPROCESSOR AND 8051 MICROCONTROLLER	10		
Introduction – Architecture of 8085 – Pin Configuration – Addressing Modes –Instruction set, Timing				
diagram of 8085 - Concepts of 8051 microcontroller - Block diagram				
UNIT III	PROGRAMMABLE PERIPHERAL INTERFACE	8		
Introduction – Architecture of 8255, Keyboard interfacing, LED display –interfacing, ADC and DAC				
interface, Temperature Control – Stepper Motor Control – Traffic Control interface.				
UNIT IV	PROGRAMMABLE LOGIC CONTROLLER	7		
Introduction – Basic structure – Input and output processing – Programming – Mnemonics – Timers,				
counters and internal relays – Data handling – Selection of PLC.				
UNIT V	ACTUATORS AND MECHATRONIC SYSTEM DESIGN	8		
Types of Step	per and Servo motors - Construction - Working Principle - Advantages and			
Disadvantages. Design process-stages of design process – Traditional and Mechatronics design concepts				
$- \ Case \ studies \ of \ Mechatronics \ systems - Pick \ and \ place \ Robot - Engine \ Management \ system \ -$				
Automatic car p	park barrier.			

TOTAL: 45 PERIODS

TEXTBOOKS

- 1. Bolton, "Mechatronics", Printice Hall, 2019, 6th Edition.
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085" 5th Edition, Prentice Hall, 2008.

- 1. Michael B.Histand and Davis G.Alciatore, "Introduction to Mechatronics and Measurement systems", McGraw Hill International edition, 2007.
- 2. Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall, 1993.
- 3. Smaili.A and Mrad.F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.
- 4. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", PWS publishing company, 2007.
- 5. Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of India, 2007. 6. Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2013

COURSE OUTCOMES

Upon completion of the course, students will be able to:

CO1	Discuss the interdisciplinary application of Electronics, Electrical, Mechanical and Computer systems for the control of Mechanical, Electronic Systems and Sensor technology
CO2	Discuss the architecture of Microcontroller and Microprocessor, Pin diagram, Addressing modes of Microcontroller and Microprocessor.
CO3	Discuss programmable peripheral Interface Architecture of 8255 PPI and various device interfacing.
CO4	Explain the architecture, programming and application of Programmable Logic controllers to problems and challenges in area of mechatronics Engineering.
CO5	Discuss various actuators and mechatronics systems using the knowledge and skills acquired through the course and also from given case studies.

MAPPING OF COs WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)												GRAM CIFIC OMES Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	3	-	-	-	-	-	-	-	-	2	2	3
CO2	3	-	3	-	-	-	-	-	-	-	-	1	2	3
CO3	3	-	3	-	-	-	-	-	-	-	-	1	2	3
CO4	3	2	3	-	3	-	-	-	-	2	-	2	2	3
CO5	3	-	3	-	3	-	-	-	-	3	-	2	2	3

	COMPUTER INTEGRATED MANUFACTURING	L	T	P	C
ME4702	COMI CIER INTEGRATED MANUFACTURING	3	0	0	3
OBJECTIVE *	S To understand the application of computers in various aspects of Manufacturing Design, Proper planning, Manufacturing cost, Layout & Material Handling systems.		,		
UNIT I	INTRODUCTION				9
CAD/CAM – production - N problems – M	tion to CAD and CAM – Manufacturing Planning, Manufacturing control- In Concurrent Engineering-CIM concepts – Computerized elements of CIM system and Standard and Metrics – Mathematical models of Production Performanufacturing Control – Simple Problems – Basic Elements of an Automated system – Lean Production and Just-In-Time Production. Introduction to 3D printing.	em – ance stem	Type – Sin – Le	s of nple vels	CO
UNIT II	PRODUCTION PLANNING AND CONTROL AND COMPUTERISED PROCESS PLANNING				9
Planning – A planning – (ng – Computer Aided Process Planning (CAPP) – Logical steps in Computer Aggregate Production Planning and the Master Production Schedule – Material Capacity Planning- Control Systems-Shop Floor Control-Inventory Control Resource Planning-II (MRP-II) & Enterprise Resource Planning (ERP) - Simple	Req	uiren Brief	nent on	CO
UNIT III	CELLULAR MANUFACTURING				9
Coding syster cell design an	logy(GT), Part Families – Parts Classification and coding – Simple Problems – Production flow Analysis – Cellular Manufacturing – Composite part concert layout – Quantitative analysis in Cellular Manufacturing – Rank Order Cluster chines in a GT cell – Hollier Method – Simple Problems.	ept –	Mac	hine	CO
UNIT IV	FLEXIBLE MANUFACTURING SYSTEM (FMS) AND AUTOMATED GUIDED VEHICLE SYSTEM (AGVS)				9
	bility - FMS – FMS Components – FMS Application & Benefits – FMS Planning	r and	Cont	rol_	
Quantitative a	nalysis in FMS – Simple Problems. Automated Guided Vehicle System (AG Vehicle Guidance technology – Vehicle Management & Safety.				CO
Quantitative a	nalysis in FMS - Simple Problems. Automated Guided Vehicle System (AG				CO-

TEXTBOOKS

- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India, 2008.
- 2. Radhakrishnan P, Subramanyan S.and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2000.

REFERENCE BOOKS

- 1. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 2003.
- 2. Gideon Halevi and Roland Weill, "Principles of Process Planning A Logical Approach" Chapman & Hall, London, 1995.
- 3. Rao. P, N Tewari &T.K. Kundra, "Computer Aided Manufacturing", Tata McGraw Hill Publishing Company, 2000.

COURSE OUTCOMES

 $\ \, \textbf{Upon completion of the course, students will be able to:} \\$

CO1	Understand the elements of CIM and CIM Concept
CO2	Understand Computers in process planning and use in CIM
CO3	Understand the uses of Cellular Manufacturing in CIM
CO4	Understand the purpose of FMS and AGV in CIM
CO5	Understand the Robotic fundamentals in CIM

MAPPING OF COs WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOME (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	-	-	-	-	2	-	-	3	3	3	2	1	2	
CO2	-	-	-	-	-	2	-	-	3	3	3	2	1	0	
CO3	-	-	-	-	-	2	-	-	3	3	3	2	1	0	
CO4	-	-	-	-	-	2	-	-	3	3	3	2	1	2	
CO5	-	-	-	-	-	2	-	-	3	3	3	2	1	2	

CT 4504	WINAN WALLER AND PRIVING	L	T	P	C
GE4791	HUMAN VALUES AND ETHICS	3	0	0	3

OBJECTIVES

To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I	HUMAN VALUES	10
Living peacefully – Empathy – Self-con	Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Infidence – Character – Spirituality – Introduction to Yoga and meditation for ence and stress management.	CO1
UNIT II	ENGINEERING ETHICS	9
Autonomy - Kohlb	ring Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral berg's theory – Gilligan's theory – Consensus and Controversy – Models of professional but right action – Self-interest – Customs and Religion – Uses of Ethical Theories.	CO2
UNIT III	ENGINEERING AS SOCIAL EXPERIMENTATION	9
Engineering as Exp Outlook on Law.	perimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced	CO3
UNIT IV	SAFETY, RESPONSIBILITIES AND RIGHTS	9
Authority - Collec	Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Respect for ctive Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – s – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.	CO4
UNIT V	GLOBAL ISSUES	8
as Managers - Cor	orations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers is ulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Corporate Social Responsibility.	CO5

TOTAL: 45 PERIODS

TEXTBOOKS

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

REFERENCE BOOKS

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2013.
- 6. World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011.

COUI	RSE O	UTCON	MES											
Upon	comple	etion of	the cou	ırse, stı	udents	will be	able to)						
CO1	Studen society		ld be ab	le to ap	ply eth	ics in so	ociety,	and rea	lize the	respons	sibilitie	s and rig	hts in the	e
CO2	Studen	Students should be able to discuss the ethical issues related to engineering												
CO3	Unders	stood th	e core v	alues tl	hat shap	e the e	thical b	ehaviou	ır of an	enginee	er			
CO4	Expose	ed awar	eness o	n profes	ssional	ethics a	nd hum	an valu	es					
CO5	Known	n their r	ole in te	echnolo	gical de	evelopn	nent							
				MA	PPING	G OF C	Os WI	ГН РО	s AND	PSOs				
COs				P	ROGR	AM OU	UTCON	MES (P	Os)				OUTC	CIFIC
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	-	-	-	-	-	2	2	3	2	-	-	2	-	-
CO2	-	-	-	-	-	2	2	3	2	-	-	2		-
CO3	-	-	-	-	-	2	2	3	2	-	-	2	-	-
CO4	-	-	-	-	-	2	2	3	2	-	-	2	-	-
CO5	-	-	_	-	-	2	2	3	2	-	-	2	-	-

	ME4707	SIMULATION AND ANALYSIS LABORATORY	L	T	
į.	NIE4/U/	SIMULATION AND ANALISIS LABORATORY	0	0	
Ol	BJECTIVES				
*	•	student's skills in proper modeling, meshing, and setting up			
		ties, loads, and constraints for computer simulation and analysis			
*	•	re to software tools needed to analyze engineering problems			
*	-	tudents to different applications of simulation and analysis tools			
*	To provide the	analysis skills to interpret and draw conclusion the results of computer analysis			
LIS	T OF EXPERI	MENTS			
1. <i>A</i>	Analysis of bar el	ement under axial loads and thermal loads.			
2. <i>A</i>	Analysis of truss	structure.			
3. <i>A</i>	Analysis of beam	s with point load, UDL, UVL, plotting shear force and bending moment diagram	ns.		
4. <i>A</i>	Analysis of a Plat	e with various Boundary conditions.			
5. S	tress analysis of	an Axi-symmetric component.			
6. N	Modal Analysis o	of Beam and Plate Elements.			
7. F	Iarmonic Analys	is of Beam and Plate Elements.			
8. <i>A</i>	Analysis of Colur	nn with Buckling Loads.			
9. S	teady state heat	transfer analysis of composite wall.			
10.	Vibration analys	sis of spring-mass systems.			
11.	Coupled field an	nalysis of a solid object.			
12.	Fluid flow analy	rsis on circular pipe.			
13.	Analysis of Join	ts and Springs.			_
14.	Case Study - Str	uctural/Thermal Analysis.			
15.	Case Study – Flu	uid Analysis.			

TOTAL: 60 PERIODS

CO2

CO1

CO2

CO1

Upon	comple	ompletion of the course, students will be able to												
CO1	Analyz	nalyze and simulate the static solid and structural mechanics problems using FEA software												
CO2	Under	Understand heat transfer and dynamic analysis.												
				MA	APPIN	G OF C	COs WI	тн РС	s AND	PSOs				
COs		PROGRAM SPECIFIC OUTCOMES (POs) OUTCOMES (PSOs)												CIFIC COMES
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1 3 3 3 - 2 2 1 - 2 3										2			
CO2	2	3	2	-	2	2	-	-	2	-	-	2	3	2

COURSE OUTCOMES

		L	LT		C
ME4708	MECHATRONICS LABORATORY	0	0	4	2
ODIECTIV	/ES				

OBJECTIVES

❖ To know the method of programming the microprocessor and also the design, modeling & analysis of basi electrical, hydraulic & pneumatic Systems which enable the students to understand the concept of mechatronics.

LIST OF EXPERIMENTS

- 1. Assembly language programming of 8085 Addition Subtraction Multiplication Division Sorting Code Conversion.
- 2. Stepper motor interface.
- 3. Traffic light interface
- 4. Speed control of DC motor.
- 5. Study of various types of transducers.
- 6. Study of hydraulic, pneumatic and electro-pneumatic circuits.
- 7. Modelling and analysis of basic hydraulic, pneumatic and electrical circuits using Software.
- 8. Study of PLC and its applications.
- 9. Study of image processing technique.

TOTAL: 60 PERIODS

CO₁

CO₂

COURSE OUTCOMES

Upon completion of the course, students will be able to:

CO1	Demonstrate the functioning of mechatronics system with various pneumatic, hydraulic and electrical systems.
CO2	Demonstrate the functioning of control systems with the help of PLC and microcontrollers.

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)											SPEC OUTC	PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	-	-	-	3	-	-	-	-	-	-	-	2	3	
CO2	2	-	-	-	3	-	-	-	-	-	-	-	2	3	

GE4792	INDUSTRIAL MANAGEMENT	L	T	P	С				
GETIVE	III OO IIIII MII MIGDINIII I	3	0	0	3				
	ne students to study the evolution of Management, to study the functions and at and to learn the application of the principles in an organization.	prin	iciple	es of					
UNIT I	INTRODUCTION				9				
Management - Definition - Functions - Evolution of Modern Management - Scientific Management Development of Management Thought. Approaches to the study of Management, Forms of Organization - Individual Ownership - Partnership - Joint Stock Companies - Co- operative Enterprises - Public Sector Undertakings, Corporate Frame Work - Share Holders - Board of Directors - Committees - Chief Executive - Trade Union									
UNIT II	FUNCTIONS OF MANAGEMENT	_			9				
Planning – Nature and Purpose – Objectives – Strategies – Policies and Planning Premises – Decision Making – Organizing – Nature and Process – Premises – Departmentalization – Line and staff – Decentralization – Organizational culture, Staffing - selection and training – Placement – Performance appraisal – Career Strategy – Organizational Development. Leading – Managing human factor – Leadership – Communication, Controlling – Process of Controlling – Controlling techniques, productivity and operations management – Preventive control, Industrial Safety.									
UNIT III	ORGANIZATIONAL BEHAVIOUR				9				
behaviour – cause Implications. Person	nization – Managerial Role and functions – Organizational approaches es – Environmental Effect – Behavior and Performance, Perception – Organization – Organizational approaches – Organizational appr	gani	zatio	nal	CO3				
UNIT IV	GROUP DYNAMICS				9				
communication – I Grid – Leadership – Types – Causes – decentralization –	Groups – Contributing factors – Group Norms, Communication – Process – Effective communication, leadership – formal and informal characteristics – styles – Group Decision Making – Leadership Role in Group Decision, Gro – Conflict Resolution – Inter group relations and conflict, Organization centra – Formal and informal – Organizational Structures – Organizational Grange Process – Resistance to Change – Culture and Ethics.	- Ma up C aliza	nagei Confli tion a	rial lets and	CO4				
UNIT V	MODERN CONCEPTS				9				
Management by Objectives (MBO), Management by Exception (MBE), Strategic Management - Planning for Future direction – SWOT Analysis – Information technology in management – Decisions support system – Business Process Re-engineering (BPR) – Enterprises Resource Planning (ERP) – Supply Chain Management (SCM) – Activity Based Management (ABM).									
	ТОТ	AL:	45 P	PER	IODS				
TEXTBOOKS									

REFERENCE BOOKS

- 1. Joseph J, Massie, "Essentials of Management" Prentice Hall of India Pvt. Ltd. 1985.
- 2. Ties, AF, Stoner and R.Edward Freeman, "Management" Prentice Hall of India Pvt. Ltd. New Delhi 110 011, 1992

2. Stephen P. Robbins, "Organization Behaviour", Pearson Education Inc., 13 edition, 2010.

3. Tripathi. P.C. & P.N. Reddy, "Principles of Management", Tata McGraw Hill, 2006.

Herald Knottz and Heinz Weihrich, "Essentials of Management", Tata McGraw Hill Education Pvt. Ltd.,

COUI	RSE OU	JTCON	MES											
Upon	comple	tion of	the cou	ırse, stı	ıdents	will be	able to							
CO1	Know	about E	volutio	n of Mo	dern M	anagen	nent and	d Forms	of Org	ganizatio	on.			
CO2	Unders	Understand the need for planning and controlling activities in the organisation												
CO3	Learn a	Learn about the individuals and group behaviours in the organisation												
CO4	Know	Know about the effect Leadership roles and Organizational Structures												
CO5	Under	Understand the different modern concepts to evaluate the management activities.												
	1			M	APPIN	G OF (COs W	ITH PO	Os ANI) PSOs				
COs		PROGRAM SPECIFIC OUTCOMES (POs) OUTCOMES (PSOs)												CIFIC OMES
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	ı	2	-	-	3	3	3	2	-	-
CO2	-	-	-	-	-	2	-	-	3	3	3	2	-	-
CO3	-	-	-	_	-	2	-	_	3	3	3	2	-	-
CO4	-	-	-	-	-	2	-	-	3	3	3	2	-	-
CO5	-	-	-	-	-	2	_	_	3	3	3	2	-	_

N 577 400 F	DD O VECT WODY	L	T	P	C
ME4807	PROJECT WORK	0	0	20	10

OBJECTIVES

- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 2 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

	SE OUTCOMES ompletion of the course, students will be able to
CO1	Take up any challenging practical problems and find solution by formulating proper methodology.
CO2	Design engineering solutions to complex problems utilizing a systems approach and conduct an engineering project and communicate with engineers and the community at large in written and oral forms.

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)											SPEC OUTC	PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	ı	ı	-	3	-	2	2	1	3	3	
CO2	3	3	3	3	-	-	-	3	-	2	2	1	3	3	

MX4001

INTRODUCTION TO WOMEN AND GENDER STUDIES

L	T	P	C
3	0	0	0

OBJECTIVES

- To enhance social sensitivity, sensibility and responsibility thereby instilling the life skills among students, through applied learning.
- To upgrade knowledge and comprehension of gender issues for attitudinal and behavioural changes among marginalized groups to claim the right to life with dignity and equality through extension and collaborative activities.
- To evolve inclusive approach for holistic development in order to promote women empowerment

UNIT I	INTRODUCTION TO WOMEN'S STUDIES	9
an academic Movements	s in Gender studies - Need, Scope and challenges of Women's Studies - Women's Studies as discipline - Women's Studies to Gender Studies - Need for Gender Sensitization - Women's - global and local: Pre-independence - Post-independence and Contemporary Debates - mmittees and Commissions for Women.	CO1
UNIT II	FEMINIST THINKERS AND THEORIES	9
Feminism - 1	ninism - Marxist Feminism - Radical Feminism - Socialist Feminism - Indian Feminism - Black Eco-Feminism - New Feminist Debates- Post Colonial /Post Modern - Masculinity Studies - ry Contestations – Intersex and Transgender Movements. Feminist thinkers in 18 th ,19 th , 20 th and .	CO2
UNIT III	GENDER AND EDUCATION	9
profession are for the Marg	Education – Gender diversities and disparities in enrolment, Curriculumcontent, Dropouts, and Gender - Gendered Education-Family, Culture, Gender roles, Gender Identities -Education sinalized Women - Recent Trends in Women's Education – Committees and Commissions on Vocational education and skill Development for women.	CO3
UNIT IV	WOMEN, WORK AND EMPLOYMENT	9
of Work – Pr – Mode of Pr	Perspective: Fredrick Engels, Rosa Luxemburg, Sandra Whiteworth, BoserupEsther -Concept roductive and non – productive work – Use value and market value - Gender Division of Labour roduction – Women in organized andunorganized sector - New Economic Policy and its impact a Employment – Globalization –Structural Adjustment Programs.	CO4
UNIT V	GENDER AND ENTREPRENEURSHIP	9
Entrepreneu	d meaning, Importance of Entrepreneurship, Entrepreneurial traits, Factors contributing to rship, enabling environment, small Enterprises, women in agri-business - Gender and emerging – Impact - Self-help Groups and Micro Credit - Gender mainstreaming, Gender budgeting, I Analysis.	CO5

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Jaya Kothari Pillai- 1995, Women and Empowerment, New Delhi: Gyan Publishing House
- 2. JoRoland—: 1997, Questioning Empowerment, Oxfam Oxford.
- 3. Janet Townsend etal-: 1999, Women and Power, Fighting Patriarchy and Poverty. Zed Books, London.
- 4. Naila Kabeer: 1996, Reversed Realities, Kali for women, New Delhi.

	COURSE OUTCOMES Upon completion of the course, students will be able to								
CO1	To enhance the social sensitivity, sensibility and responsibility thereby instilling the life skills among students.								
CO2	To upgrade knowledge and comprehension of gender issues for attitudinal and behavioural change among men, women and transgender etc. to claim the right to life with dignity and equality.								
CO3	To bring social, economic, political and cultural empowerment and gender equality in personal as well Professional life.								
CO4	To crystallize the teaching of Women's Studies in term of teaching, research and extension. in order								
CO5	To create more gender equality and equity world by education, sensitization and empowerment.								

MAPPING OF COs WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)												SPE OUT	PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	-	
CO2	-	-	-	-	-	1	-	1	-	-	-	1	-	-	
CO3	-	-	-	-	-	1	-	1	-	-	-	1	-	-	
CO4	-	-	-	-	-	1	-	1	-	-	-	1	-	-	
CO5	-	-	-	1	-	1	-	1	-	-	-	1	-	-	

MX4002	ELEMENTS OF LITERATURE
	1

L	T	P	C
3	0	0	0

OBJECTIVES

- 1. To understand the recent contexts, concepts and ideologies.
- 2. To acquaint themselves with the major generic divisions in English literature.
- 3. To acknowledge the conventions of literary research and documentation.

UNIT I	KEY ELEMENTS OF LITERATURE								
Language - Plot - Setting/Milieu - Character - Theme - Point of View - Tone/Mood.									
UNIT II PROSE									
The form of prose - written and spoken prose - individual and common style - simplicity and ornamentation - abstract and concrete - realism, romance and unreality - the science of rhetoric.									
UNIT III	POETRY	9							
_	e of form - the physical form of poetry - metre - variation - rhyme - internal pattern - logical use of associations - patterns of imagery the main types of poetry.	CO3							
UNIT IV	NOVEL	9							
_	of fiction - verisimilitude - the point of view - plot - character - character revealed - scene and background - dominant themes - the experimental novel.	CO4							
UNIT V	DRAMA	9							
Live literature - action - plots - conventional divisions - direct experience of characters - dialogue and conversation - verse and prose - types of drama - drama and history - use of notes – interpretation.									

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Barnet Sylvan, Types of Drama; Plays and Essays, Boston, Little Brown, 1981.
- 2. Brooks, Peter, Reading for the Plot; Design and Intention in Narrative, Oxford, Clarendon Press, 1984.
- 3. Hardings D.W., Words Into Rhythm; English Speech, OUP, New Delhi, 1976.
- 4. Murfin, Ross, and Supriya M. Ray. The Bedford Glossary of Critical and Literary Terms. New York: Macmillan Press Ltd., 1997.
- 5. Paul, Poplawski, ed. English Literature in Context. London: CUP,2008.

COUR	COURSE OUTCOMES									
Upon completion of the course, students will be able to										
CO1	Comprehend various forms of literature like prose, poetry, drama and fiction.									
CO2	Interpret and appreciate the didactic purpose in literature.									
CO3	Identify the poetic devices to the connection of poems.									
CO4	Describe the process and origin of the development of drama in its structure with the text.									
CO5	Define the various types of novels with their structure									

MAPPING OF COs WITH POs AND PSOs

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	1
CO2	-	-	-	-	-	1	-	1	-	-	-	1	-	1
CO3	-	-	-	-	-	1	-	1	-	-	-	1	-	1
CO4	-	-	-	-	-	1	-	1	-	-	-	1	-	1
CO5	-	-	-	-	-	1	-	1	-	-	-	1	-	1

MX4003

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

L	T	P	С
3	0	0	0

OBJECTIVES

- ❖ To develop inter personal skills and be an effective goal-oriented team player.
- ❖ To develop professionals with idealistic, practical and moral values.
- ❖ To develop communication and problem-solving skills.
- ❖ To re-engineer attitude and understand its influence on behavior

UNIT I		9				
	Holistic development of personality I 21,22 (wisdom), Verses- 29,31,32 (pride & heroism), Verses- 26,28,63,65 (virtue)	CO1				
UNIT II		9				
Neetisatakam-Holistic development of personality II Verses- 52,53,59 (don'ts), Verses- 71,73,75,78 (do's)						
UNIT III		9				
Shrimad Bhagy	y-to-day work and duties. vad Geeta: Chapter 2-Verses 41, 47,48, Chapter 3-Verses 13, 21, 27, 35, Chapter 6-23, 35, Chapter 18-Verses 45, 46, 48.	CO2				
UNIT IV		9				
	vasic knowledge. vad Geeta: Chapter2-Verses 56, 62, 68, Chapter 12 -Verses 13, 14, 15, 16,17, 18	CO2				
UNIT V		9				
Personality of Role model. Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39, Chapter18 – Verses 37,38,63.						

TOTAL PERIODS: 45

TEXT BOOKS

- 1. "Srimad Bhagavad Gita" by Swami Swarupananda, Advaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

COU	COURSE OUTCOMES										
Upon completion of the course, students will be able to											
CO1	Study of Shrimad Bhagwad Geeta will help the student in developing his personality and achieve the highest goal in life.										
CO2	The person who has studied Geeta will lead the nation and mankind to peace and prosperity.										
CO3	Study of Neetishatakam will help in developing versatile personality.										

MAPPING OF COs WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	1	-	1	-	-	-	1	-	1
CO2	-	-	-	-	-	1	-	1	-	-	-	1	-	1
CO3	-	-	-	1	-	1	1	1	-	-	-	1	-	1

M	X40	Ո4

DISASTER MANAGEMENT

L	T	P	C
3	0	0	0

OBJECTIVES

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction.
- ❖ To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- ❖ To enhance awareness of institutional processes in the country and
- ❖ To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

where they live	e, with due sensitivity	
UNIT I	NTRODUCTION TO DISASTERS	9
Landslide, Flood, I environmental, hea disability - Global (er, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, alth, psychosocial, etc Differential impacts- in terms of caste, class, gender, age, location, trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos various types of Disasters	CO
UNIT II AI	PPROACHES TO DISASTER RISK REDUCTION (DRR)	9
Structural- nonstruc Local Bodies (PRIs	hases, Culture of safety, prevention, mitigation and preparedness community based DRR, actural measures, Roles and responsibilities of-community, Panchayati Raj Institutions/Urban s/ULBs), States, Centre, and other stake-holders-Institutional Processess and Framework at Level-State Disaster Management Authority(SDMA) – Early Warning System – Advisories Agencies.	CO
UNIT III IN	NTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT	9
embankments, char	Vulnerabilities, differential impacts, impact of Development projects such as dams, anges in Land-use etc Climate Change Adaptation- IPCC Scenario and Scenarios in the Relevance of indigenous knowledge, appropriate technology and local resources.	CO
UNIT IV DI	ISASTER RISK MANAGEMENT IN INDIA	9
Health, Waste Ma Management Act a Information Techno	rability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, anagement, Institutional arrangements (Mitigation, Response and Preparedness, Disaster and Policy - Other related policies, plans, programmes and legislation – Role of GIS and hology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Damage Assessment	CO
C1111	ISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD VORKS	9
Infrastructure: Case Floods: Fluvial and	I Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and se Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case ased Inputs for Disaster Mitigation and Management and field works related to disaster	CO
	TOTAL: 45 PERIO)DS

TEXTBOOKS

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, NewDelhi, 2010.

REFERENCE BOOKS

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

COURSE OUTCOMES

CO5

Upon completion of the course, students will be able to

CO1	Differentiate the types of disasters, causes and their impact on environment and society
CO2	Assess vulnerability and various methods of risk reduction measures as well as mitigation
CO3	Draw the hazard and vulnerability profile of India, Scenarios in the Indian context,
CO4	Know about the relief measures, Disaster damage assessment and management.

MAPPING OF COs WITH POS AND PSOS

Learn through case studies about the damages caused due to various disasters.

COs	PROGRAM OUTCOMES (POs)													GRAM CIFIC OMES Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	_	-	3	-	-	3	3	-	-	-	-	2	-	2
CO2	-	-	3	-	-	3	3	-	-	-	-	2	-	2
CO3	-	-	3	-	-	3	3	-	-	-	-	2	-	2
CO4	-	-	3	-	-	3	3	-	-	-	-	2	-	2
CO5	_	-	3	-	-	3	3	-	-	-	-	2	-	2

DBJECTIVES ★ Explaining the purpose of well being and impact it has on their work and life ★ To teach basic methods used in the systems of Ayurveda, Siddha and Yoga ★ Identify key factors that contribute to work place burnout and sustainability. UNIT I HEALTH AND HAPPINESS Mental and physical health, physical and emotional safety, and a feeling of belonging, sense of purpose, chievement and success. Need for Managing Self, Positive Psychology and Yoga. UNIT II WELL BEING Health and Wellbeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining Wellbeing Methods, Obstacles, Realms and Types of Interventions for Managing Self and Career UNIT III YOGA PRACTICES Definitions of Eight parts of yoga.(Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines —Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Trinciples of Siddha, the five natural elements and three humours. Physical constituents	9 CO 9
To teach basic methods used in the systems of Ayurveda, Siddha and Yoga Identify key factors that contribute to work place burnout and sustainability. UNIT I HEALTH AND HAPPINESS Mental and physical health, physical and emotional safety, and a feeling of belonging, sense of purpose, chievement and success. Need for Managing Self, Positive Psychology and Yoga. UNIT II WELL BEING Health and Wellbeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining Wellbeing Methods, Obstacles, Realms and Types of Interventions for Managing Self and Career UNIT III YOGA PRACTICES Definitions of Eight parts of yoga. (Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines - Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	CO 9
 ★ Identify key factors that contribute to work place burnout and sustainability. UNIT I HEALTH AND HAPPINESS Mental and physical health, physical and emotional safety, and a feeling of belonging, sense of purpose, chievement and success. Need for Managing Self, Positive Psychology and Yoga. UNIT II WELL BEING Health and Wellbeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining Wellbeing Methods, Obstacles, Realms and Types of Interventions for Managing Self and Career UNIT III YOGA PRACTICES Definitions of Eight parts of yoga.(Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines -Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents. 	CO 9
UNIT I HEALTH AND HAPPINESS Mental and physical health, physical and emotional safety, and a feeling of belonging, sense of purpose, chievement and success. Need for Managing Self, Positive Psychology and Yoga. UNIT II WELL BEING Mealth and Wellbeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining Wellbeing Methods, Obstacles, Realms and Types of Interventions for Managing Self and Career UNIT III YOGA PRACTICES Definitions of Eight parts of yoga. (Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines - Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	CO 9
Mental and physical health, physical and emotional safety, and a feeling of belonging, sense of purpose, chievement and success. Need for Managing Self, Positive Psychology and Yoga. UNIT II WELL BEING Health and Wellbeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining Wellbeing Methods, Obstacles, Realms and Types of Interventions for Managing Self and Career UNIT III YOGA PRACTICES Definitions of Eight parts of yoga. (Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines - Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	CO 9
UNIT II WELL BEING Health and Wellbeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining Wellbeing Methods, Obstacles, Realms and Types of Interventions for Managing Self and Career UNIT III YOGA PRACTICES Definitions of Eight parts of yoga. (Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines - Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	9 CO 9
UNIT II WELL BEING Health and Wellbeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining Wellbeing Methods, Obstacles, Realms and Types of Interventions for Managing Self and Career UNIT III YOGA PRACTICES Definitions of Eight parts of yoga.(Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines — Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	9 CO 9
Health and Wellbeing: Perspectives from Positive Psychology, Yoga and Ayurveda, Attaining Wellbeing Methods, Obstacles, Realms and Types of Interventions for Managing Self and Career UNIT III YOGA PRACTICES Definitions of Eight parts of yoga.(Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines - Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	9
Whith III YOGA PRACTICES Definitions of Eight parts of yoga. (Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines - Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	9
UNIT III YOGA PRACTICES Definitions of Eight parts of yoga.(Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines - Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	9
Definitions of Eight parts of yoga.(Ashtanga). Asan and Pranayam - Various yoga poses and their benefits or mind & body - Regularization of breathing techniques and its effects-Types of pranayam UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines – Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	
UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines – Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	CO
UNIT IV AYURVEDA PRACTICS Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines – Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents.	00
Health Benefits of Ayurveda, Ayurvedic techniques: Diet, Herbal, Acupuncture, Massage and Meditation. Ayurveda and allied disciplines – Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents. TOTAL:45 PERIC	CO
Ayurveda and allied disciplines – Approach to health disease in Ayurveda UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents. TOTAL:45 PERIC	9
UNIT V BASIC CONCEPTS AND PRINCIPLES OF SIDDHA MEDICINE Principles of Siddha- the five natural elements and three humours, Physical constituents. TOTAL:45 PERIO	~~
Principles of Siddha- the five natural elements and three humours, Physical constituents. TOTAL:45 PERIO	CO
TOTAL:45 PERIO	9
	СО
CEVT DOOVS	IOD
. Mental health and well being in workplace by Gillhassan and Donna Butler.	
. Yogic Asanas for Group Training - Part- I": Janardan Swami Yogabhyasi Mandal, Nagpur.	
. Textbook of Ayurveda: Volume 1 - Fundamental Principles of Ayurveda by Dr Vasant Lad.	
. Siddha medicine handbook of raditional remedies by Paul Joseph	
REFERENCE BOOKS	
.The Social Psychology of Mental Health: Basic Mechanisms and Applications by Diane N Ruble	
"Raja yoga or conquering the Internal Nature" by Swami Vivekananda, Advaita	
Ashrama Publication Department), Kolkata.	

Page 127 of 230

To develop healthy mind in a healthy body thus improving social health also

Upon completion of the course, students will be able

To know the values of ayurveda system

To create awareness about health and happiness

To educate the importance of various yoga asanas

To understand the importance of siddha medicine.

CO1

CO₂

CO3

CO4

CO5

MAPPING OF COs WITH POs

COa				P	ROGRA	M OUT	COME	S (POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	ı	-	-	1	-	2	2	-	1	-	ı	1
CO2	-	-	-	-	-	2	2	-	-	-	-	1
CO3	-	-	-	-	-	2	2	-	-	-	-	1
CO4	-	-	-	-	-	2	2	-	-	-	-	1
CO5	-	-	-	-	-	2	2	-	-	-	-	1

MX4006

HISTORY OF SCIENCE AND TECHNOLOGY IN INDIA

L	T	P	C
3	0	0	0

OBJECTIVES

- To provide an exposure to the development of science and technology in India
- To impart authentic knowledge of India's scientific and technological traditions.
- To provide an understanding of the socio-cultural and philosophical context in which science and technology developed.
- To help in repositioning India's contributions in science and technology

UNIT I	INTRODUCTION	9
	thodology of Indian sciences - An overview of Indian contributions to sciences - An adian contributions to technology	CO1
UNIT II	ASTRONOMY	9
	of astronomy in India- Pancanga: Indian calendrical computations- The distinctfeatures of ary models- Computation of eclipses: Its simplicity- elegance and efficiency- Observational India	CO2
UNIT III	MATHEMATICS	9
combinatoria equations- W	of the development of mathematics in India – Mathematics contained in Sulbasutras – l aspects of the Chandassastra – Solutions to the first and second order indeterminate eaving mathematics into beautiful poetry: Bhaskaracarya – The evolution of sine function e discovery of calculus by Kerala astronomers.	CO3
UNIT IV	AYURVEDA	9
and allied di	yurveda – Rational foundations of Ayurveda – Textual sources in Ayurveda – Ayurveda sciplines –Approach to health disease in Ayurveda – Approach to diet and nutrition in Ayurveda and modern medicine – Ayurveda and Yoga	CO4
UNIT V	TECHNOLOGICAL DEVELOPMENT IN INDIA	9

TOTAL: 45PERIODS

TEXT BOOKS

- 1. Suvobrata Sarkar, History of Science, Technology, Environment, and Medicine in India, Taylor & Francis, London
- 2. NeeraMisra, Sabareesh P.a. 2022, A Brief History of Science in India, Garuda Prakashan Private Limited.
- 3. Prittam Dutta 2021, WHAT IS ASTRONOMY?. Notion Press

REFERENCE BOOKS

- 1. D. P. Chatpathayaya, History of science, philosophy, and culture in India civilization, Uma das Gupta, Pearson Education.
- 2. Bryan Bunch, Bryan H. Bunch, Alexander Hellemans, The History of Science and Technology, Houghton Mifflin.
- 3. Projit Bihari Mukharji · 2016, Doctoring Traditions-Ayurveda, Small Technologies, and Braided Sciences, University of Chicago Press

	RSE OUTCOME completion of the course, students will be able to:
CO1	Gain knowledge on Indian sciences
CO2	Able to understand the evolution of stars as well as of the large scale structure of the Universe
CO3	Can use to solve problems involved in arithmetic, algebra, geometry, and other fields of mathematics
CO4	Helps in understanding each individual at a very subtle, personal level and gives a detailed protocol for diet, daily routines and activities to be followed.
CO5	Gain knowledge on origin of agriculture, technical aspects of pottery and silpasastra

MAPPING OF COs WITH POs

					PROGR	RAM OU	TCOMI	ES (POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	ı	ı	-	1	-	-	2	2	ı	-	-	2
CO2	2	2	1	1	1	2	2	1	ı	-	1	3
CO3	3	3	2	1	1	-	-	-	1	-	1	2
CO4	1	-	-	-	-	3	3	1	-	-	-	3
CO5	2	2	1	1	2	3	3	1	-	-	-	2

MX4007

POLITICAL AND ECONOMIC THOUGHT FOR HUMANE SOCIETY

L	P	T	C
3	0	0	0

OBJECTIVES

- ❖ To understand the concept of political science and theories of political science.
- To know the types of political socialization and their role.
- ❖ To explore various theories of economic thought.
- ❖ To learn the importance of human values of life.

UNIT I	POLITICAL THOUGHTS	9
Traditional app Definition; Eler	e: Definition, Nature & Scope; Relation of Political Science with other Social Sciences; roaches to the study of Political Science: Normative, Empirical and Feminist-State: nents; Relation with other organizations; Theories of origin of state (Theory of Divine, utionary); Sovereignty- definition and characteristics.	CO1
UNIT II	POLITICAL CULTURE AND POLITICAL SOCIALIZATION	9
political sociali	imensions of political culture, meaning and types of political socialization agencies of zation and their role-Meaning and types of political participation, political apathy – litical apathy, Determinants of political participation – psychological, social and	CO2
UNIT III	HISTORY OF ECONOMIC THOUGHT	9
Mercantilism, F Quesnay – The	ortance of Economic thought – Approaches of Economic Thought – Scholastics – French and English – Thomas Munn – Scientific Method and the French Physiocrats – Classical School – Adam Smith – Division of Labour – Ricardo and Theory of Rent – Ost Theory – Stationary State – Malthus and Theory of Population and Theory of Gluts.	CO3
UNIT IV	ECONOMIC BEHAVIOUR AND MORAL SENTIMENTS	9
behaviour: Self (Naturalism, Op	thics in economics; Outcomes of ethical analysis; Duties, rules and virtues; Economic interest and rational behaviour- Adam Smith and self-interest - Social Philosophy otimism, Self Interest, Invisible hand, Laisseze faire); Economic ideas: Wealth, Labour abour, Value, Distribution.	CO4
UNIT V	HUMAN VALUES	9
Value Educatio	n, Self-Exploration - its content and process; 'Natural Acceptance' and Experiential he mechanism for self-exploration, Continuous Happiness and Prosperity- A look at	

TEXT BOOKS

- 1. Bhargava, R. (2008) 'What is Political Theory', in Bhargava, R and Acharya, A. (eds.) Political Theory: An Introduction. New Delhi: Pearson Longman.
- 2. Olivier Blanchard and David R. Johnson, Macroeconomics, Sixth Edition, Pearson, 2017.
- 3. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and Professional Ethics.

REFERENCE BOOKS

- 1. O.P.Gauba, (2015) An Introduction to Political Theory, New Delhi: Mayur Publishers.
- 2. Ashaf, Ali and Sharma B.N. 2001. Political Sociology, University Press, Hyderabad.
- 3. Jonathan Conlin, Great Economic Thinkers: From Adam Smith to Amartya Sen, Speaking Tiger Publishing, 2018.
- 4. Linda Yueh, The Great Economists: How Their Ideas Can Help Us Today, Viking, 2018.
- 5. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Book.
- 6. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.
- 7. Irene van Staveren, The Values of Economics: An Aristotelian Perspective, London: Routledge, 2001

COURSE OUTCOMES Upon completion of the course, students will be able to CO1 To explain the traditional approached of political science and theories of state. CO2 To identify the political culture, socialization, participation and apathy. CO3 To understand the importance of economic thought and their approaches. CO4 To explore the economic behaviour and moral sentiments of the individuals. CO5 To learn the human values for harmony and to build better relationships.

MAPPING OF COS WITH POS AND PSOS

GO					PROGR	AM OU	TCOMI	ES (POs))			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	_	1	1	1	1	1	1	1	2	2	1	2
CO2	-	ı	ı	1	1	2	1	1	2	2	1	2
CO3	-	1	-	-	-	2	1	2	2	2	1	2
CO4	-	-	-	-	-	2	3	2	2	3	1	2
CO5	-	-	-	-	-	1	3	3	3	3	1	2

			1		
MX400	1NDUSTRIAL SAFTEY	L	T	P	C
OBJEC'	PINE	3	U		
	Γο impart knowledge on safety engineering fundamentals and safety management practice.	ces.			
UNIT	INTRODUCTION				9
	n of modern safety concepts – Fire prevention – Mechanical hazards – Boile Electrical Exposure.	ers, I	Press	sure	CO1
UNIT	II CHEMICAL HAZARDS				9
	l exposure – Toxic materials – Ionizing Radiation and Non-ionizing Radiation – Industrial Toxicology.	- In	dus	trial	CO2
UNIT	III ENVIRONMENTAL CONTROL				9
	Health Hazards – Environmental Control – Industrial Noise - Noise measuring of Noise, Vibration, - Personal Protection.	instr	ume	ents,	CO3
UNIT	IV HAZARD ANALYSIS				9
_	afety Analysis – Techniques – Fault Tree Analysis (FTA), Failure Modes and Effe	cts A	nal	ysis	GO 4
(FMEA),	HAZOP analysis and Risk Assessment				CO4
UNIT	V INDUSTRIAL SAFETY				9
_	s – Disaster management – catastrophe control, hazard control, Safety education a	nd tr	ainii	ng -	
Factories .	Act, Safety regulations Product safety – case studies.				CO5
	ТОТ	AL:	45 P	ERI	ODS
TEXTBO	OKS				
1. John V.	Grimaldi, "Safety Management", AITB S Publishers, 2003.				
REFERE	NCE BOOKS				
1. Safety I	Manual, "EDEL Engineering Consultancy", 2000.				
2. David I	L.Goetsch, "Occupational Safety and Health for Technologists", 5th Edition, Eng	inee	rs an	nd	
Managers	, Pearson Education Ltd., 2005				
	EOUTCOMES				
Upon cor	mpletion of the course, students will be able to:				
CO1	Understand the modern safety concepts and Mechanical hazards				
CO2	Identify the effects of Chemical exposure and Toxic materials				
CO3	Understand the Industrial Health Hazards due to environment				
CO4	Understand the System Safety Analysis Techniques				
CO5	Understand the Factories Act, Safety regulations				

MAPPING OF COs WITH POS AND PSOS

COs					PRO	GRAM	OUT(COMES	S (POs)				SPEC OUTC	GRAM CIFIC OMES Os)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	3	-	-	3	2	2	-	-	-	3	2	2
CO2	-	-	3	-	-	3	2	2	-	-	-	3	2	2
СОЗ	-	-	3	-	-	3	2	2	-	-	-	3	2	2
CO4	-	-	3	-	-	3	2	2	-	-	-	3	2	2
CO5	-	-	3	-	-	3	2	2	-	-	-	3	2	2

ME4511	VALUE ENGINEERING		+
	3	0 0	3
OBJECTIVES To Know the conce the advantages, appl	epts of value engineering, operation in maintenance, repair activities and lications	to ide	ntify
UNITI INTRODU			9
for comparison, elementof ch	advantages, applications, problemrecognition, and role in productivity, cnoice. In the organization, size and skill of VEstaff, small plant, VE activity, unique		
UNITII VALUE EN	NGINEERING JOB PLAN		9
value engineering Projects, engineering methodology. A vs. unnecessary functions. A	Formation phase, speculation phase, analysis phase. Selection and Evaluat Project selection, methods selection, value standards, application of Anatomy of the function, use esteem and exchange values, basic vs. secon Approach of function, Evaluation of function, determining function, classic evaluation of worth, determining worth, evaluation of value.	value ndary	
UNITIII VALUE EN	NGINEERING TECHNIQUES		9
and evaluating function(s) a decision making for optimum	ation for value engineering action, value engineering programmes, determinated representations assigning rupee equivalents, developing alternate means to required function maternative, use of decision matrix, queuing theory and Monte Carlo matrix, reporting results, Follow up, Use of advanced technique like Function	tions, ethod	C
UNITIV VERSATII	LITY OF VALUE ENGINEERING		9
0 0 1	in maintenance and repair activities, value engineering in non-hardware proprogramme Introduction, training plan, careerdevelopment for value engine		C
UNITV VALUE EN	NGINEERING LEVEL OF EFFORT		9
Value engineering team, co- contracts, value engineering	coordinator, designer, different services, definitions, construction manage case studies.	ement	C

- 1. Anil Kumar Mukhopadhyaya, "Value Engineering: Concepts Techniques and applications", SAGE Publications 2010.
- 2. Alphonse Dell'Isola, "Value Engineering: Practical Applications for Design, Construction, Maintenance & Operations", R S Means Co., 1997.

REFERENCEBOOKS

- 1. Richard Park, "Value Engineering: A Plan for Invention", St. Lucie Press, 1999.
- 2. Del L. Younker, "Value Engineering analysis andmethodology", Marcel Dekker Inc, New York, 2004.
- 3. Miles, L.D., "Techniques of Value Analysis and Engineering", McGraw Hill second Edition, 1989.

COURSEOUTCOMES

Uponcompletion of the course, students will beable to

CO1	Discuss the concepts of value engineering, identify the advantages, applications.
CO2	Discuss various phases of value engineering. Analyze the function, approach of function and evaluation of function. Determine the worth and value.
CO3	Discuss queuing theory.
CO4	Appraise the value engineering operation in maintenance and repair activities
CO5	Create the value engineering team and discuss the value engineering case studies

${\bf MAPPINGOFCOsWITHPOs ANDPSOs}$

COs	PROGRAMOUTCOMES(POs) OU				PROGRAMOUTCOMES(POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	2	2	-	-	-	-	-	-	-	2	-	2		
CO2	3	2	2	2	-	-	-	-	-	-	-	2	-	2		
CO3	3	2	2	2	-	-	-	-	-	-	-	2	-	2		
CO4	3	2	2	2	-	-	-	-	-	-	-	2	-	2		
CO5	3	2	2	2	1	-	-	1	-	-	-	2	-	2		

ME4512	CARICAN	L	T	P	C
ME4512	CAD/CAM	3	0	0	3

OBJECTIVES

- ❖ To Introduce and understand the Basic of Design.
- ❖ To study the two dimensional drafting and bill of material creation
- ❖ To learn three dimensional modelling and its advantages.
- ❖ To study the basic and purpose of assembling modeling.
- ❖ To study the basics of computer aided machining and part programming.

UNIT I	BASICS OF DESIGNS	9				
Understandin	g of Projections, Scales, units, GD & T; its 14 symbols, Special characteristics Title Block					
readings. Rev	rision / ECN status of drawings - Customer Specific requirements Drawing Grid					
reading		CO1				
UNIT II	2D DRAFTING	9				
Projection vi	ews - Orthographic view, Auxiliary view, Full & Half Section views, Broken Section view,					
	n view – Title Block creation – BOM Creation – Notes creation – Ballooning of 2D drawing	CO2				
and its reatur	es for Inspection reporting					
UNIT III	3D MODELING	9				
Conversion of	f Views – 2D to 3D & 3D to 2D – Parametric and Non-Parametric Modeling – Tree features	CO3				
of 3D Mode	ling and its advantages - Surface Modeling - BIW (Body In White) - Solid Modeling,					
Boolean oper	ations like Unites, Subtraction, Intersect, etc.					
UNIT IV	ASSEMBLY MODELING	9				
Basics of As	sembly modeling, Purpose of Assembly modeling & its advantages - Top to Down &					
Bottom Up m	nodeling approaches – Analysis of Clearances – Undercuts – Interferences – Stack up analysis					
-Cumulative	effect of Tolerances in after assembly conditions - motion analysis	CO4				
UNIT V	CAM	9				
Basics of CN	C Machining – 3, 4 & 5 Axis machines - CNC and Part Programing, CAM programing 2D &					
3D. Elements of CAM Orientation, Boundary Creation, Cutter Path Selection, Cutter Compensation -						
Machining Stocks, Roughing, Re-roughing, Semi Finishing & Finishing – Tool Path Generation, Isl						
and Milling Programing. Machining program simulation, integration of program with machine; Estimation						
of CNC Cycl	e time. – Post Process NC Code conversion and Setup Sheet Preparation.					
	TOTAL:45PE	RIODS				

TEXT BOOKS

- 1. Ibrahim Zeid "CAD/CAM Theory and Practice" Tata McGraw-Hill Publishing Co.2007
- 2. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India, 2008.

REFERENCE BOOKS

- 1. Donald Hearn and M. Pauline Baker "Computer Graphics". Prentice Hall, Inc., 1992.
- 2. Foley, Wan Dam, Feiner and Hughes "Computer graphics principles & practice" Pearson Edu. -2003
- 3. William M Neumann and Robert F.Sproul "Principles of Computer Graphics", McGraw Hill Book Co. Singapore, 1989.
- 4.Radhakrishnan P, Subramanyan S., Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi.2000.

	COURSEOUTCOMES Upon completion of the course, students will be able to						
CO1	1 Discuss the basics of the design and concepts.						
CO2	Develop the two dimensional drafting and projection views.						
CO3	Discuss the three dimensional modeling, parametric and Non-parametric modeling						
CO4	Discuss the assembly modeling and top down, bottom up approaches.						
CO5	Develop the computer aided machining and writing part programming.						

MAPPING OF Cos WITH Pos AND PSOs

COs	P			PROGRAM OUTCOMES(POs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	-	-	-	1	-	-	1	3	3
CO2	3	2	2	2	2	_	-	_	1	-	-	1	3	3
CO3	3	2	2	2	2	-	-	-	1	-	-	1	3	3
CO4	3	2	2	2	2	-	-	-	1	-	-	1	3	3
CO5	3	2	2	2	2	-	-	-	1	-	-	1	3	3

ME 4512	EDCONOMICS IN DESIGN	L	T	P	C				
ME4513	ERGONOMICS IN DESIGN	3	0	0	3				
OBJECTIVE									
-	posed the principles of ergonomics.								
	rn the mechanics of muscle physiology.								
* To bee	e familiar with the mathematical models, analysis and design of biomedical devices	s usın	g ca	se stu	idies.				
UNITI	VISUAL AND AUDITORY ERGONOMICS				9				
aspects of hard	ng - visual capabilities-factors affecting visual acuity and contrast sensitivity - copy text and computer screen text, factors in selecting graphic representati al display - process of hearing-principles of auditory display.				CO1				
UNITII	I ANTHROPOMETRY								
surfaces - princ	- anthropometric design principles - work space envelope- factors in design of iples of seat design - principles of control panel. Organization classification of lent causation - reducing accidents by altering behavior.				CO2				
UNITIII	CONTROLS AND DISPLAYS				9				
rotar displays m	bility physical arrangement of displays and controls- movement capability- rotary novement of displays orientation of the operator and movement relationships controls- human limitations in tracking task.				CO3				
UNITIV	MUSCLE PHYSIOLOGY								
Muscle physiology -muscle metabolism-respiratory response-joint motion study- measure of physiological in-efficiency and energy consumption-work rest cycles-aspects of manual and posture study, materialhandling (MMH) Bio-mechanical recommended limits of MMH.									
UNITV	CASE STUDIES				9				
	computer design, control panel design of an electronic instrument, computer key tudy 2: Biomedical Application, Design optimization of Medical Equipment.	y boa	rd, ł	nand	CO5				

TEXT BOOKS

- 1. Pascale Carayon, Handbook of Human Factors and Engineering, Second Edition, CRC Press, 2011
- 2. Robert.N. Bailey, Human Performance Engineering, Third Edition, 1996

REFERENCEBOOKS

- 1. Shrawan Kumar, Biomechanics in Ergonomics, Second Edition, CRC Press 2007.
- 2. Stephen Pheasant, Christine M. Haslegrave, Bodyspace: Anthropometry, Ergonomics and the Design of Work, CRC Press, Third Edition, 2016.

TOTAL:45PERIODS

3. Martin Helander, Guide to Human Factors and Ergonomics, Second Edition, CRC Press, 2005

COURSEOUTCOMES

Uponcompletion of the course, students will be able to

CO1	Understand the principles of ergonomics.
CO2	Understand the muscle physiology.
CO3	Understand the displays and controls ofphysical arrangement.
CO4	Understand the anthropometry.
CO5	Design biomedical devices.

MAPPINGOFCOsWITHPOsANDPSOs

COs		PROGRAM OUTCOMES (POs)										PROGRAM SPECIFIC OUTCOMES(SOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	-	-	-	-	-	-	-	-	-	3	1
CO2	3	3	-	-	-	-	-	-	-	-	-	-	3	1
CO3	3	3	-	-	-	-	-	-	-	-	-	-	3	1
CO4	3	3	-	-	-	-	-	-	_	-	-	-	3	1
CO5	3	3	-	-	-	-	-	-	-	-	-	-	3	1

ME4514

NEW PRODUCT DEVELOPMENT

L	T	P	C
3	0	0	3

OBJECTIVES

- This course aims at introducing the students to the basic concepts of engineering design and product development with focus on the front end processes.
- At the end of this course the student is expected to demonstrate an understanding of the overview of all the product development processes and knowledge of concept generation and selection tools.

UNITI	INTRODUCTION	9				
relevance of pro	oping products – the importance of engineering design – types of design –the design process – oduct lifecycle issues in design –designing to codes and standards- societal considerations in ign –generic product development process – various phases of product development-planning stablishing markets- market segments- relevance of market research.	CO1				
UNITII	CUSTOMER NEEDS	9				
gathering meth	tomer needs -voice of customer -customer populations- hierarchy of human needs- need nods - affinity diagrams - needs importance- establishing engineering characteristics-nchmarking- quality function deployment- house of quality- product design specification-	CO2				
UNITIII	CREATIVE THINKING	9				
systematic met	ng –creativity and problem solving- creative thinking methods- generating design concepts- hods for designing –functional decomposition – physical decomposition – functional morphological methods-TRIZ- axiomatic design	CO3				
UNITIV	DECISION MAKING AND PRODUCT ARCHITECTURE	9				
selection metho	g –decision theory –utility theory –decision trees –concept evaluation methods –Pugh concept d- weighted decision matrix –analytic hierarchy process – introduction to embodiment design – ture – types of modular architecture –steps in developing product architecture& sketching.	CO4				
UNITV	DESIGN AND COST ANALYSIS	9				
Industrial design – human factors design –user friendly design – design for serviceability – design for environment – prototyping and testing – cost evaluation –categories of cost – overhead costs – activity based costing –methods of developing cost estimates – manufacturing cost –value analysis in costing						
	TOTAL:45PEI					

TEXTBOOKS

- 1. Anita Goyal, Karl T Ulrich, Steven D Eppinger, "Product Design and Development", 7th Edition, 2020, Tata McGraw-Hill Education, ISBN-10-007-14679-9
- 2. Kevin Otto, Kristin Wood, "Product Design", Indian Reprint 2015, Pearson Education, ISBN 9788177588217

REFERENCEBOOKS

- 1. Clive L.Dym, Patrick Little, "Engineering Design: A Project-based Introduction", 3rd Edition, JohnWiley & Sons, 2009, ISBN 978-0-470-22596-7.
- 2. George E.Dieter, Linda C.Schmidt, "Engineering Design", McGraw-Hill International Edition, 4thEdition, 2009, ISBN 978-007-127189-9.
- 3. Yousef Haik, T. M. M. Shahin, "Engineering Design Process", 2nd Edition Reprint, CengageLearning, 2010, ISBN 0495668141
- 4. Donald A. Norman, "The Design of Everyday Things" MIT Press, 2013

COUL	COURSEOUTCOMES						
Upon	completionof thecourse,studentswill beable to						
CO1	Understand and discuss key concepts and principles concerning the role of product and service innovation and their contribution to generate competitive advantage in firms.						
CO2	Understand and discuss key concepts and principles concerning the activities and competencies involved in new product development.						
CO3	Understand and discuss key concepts and principles concerning- the range of tools and methods that are used to manage new product development.						
CO4	Analyze the set of potential innovation triggers and strategically select those opportunities that fit with the organizational resources and strategies.						
CO5	Critically evaluate the role of design in product development, and the ability to address costs issues through better design decisions.						

MAPPINGOFCOsWITHPOsANDPSOs

COs		PROGRAMOUTCOMES(POs)												PROGRAM SPECIFIC OUTCOMES(PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	3		
CO2	3	3	-	-	-	-	-	-	-	-	-	-	3	2		
CO3	3	3	-	-	-	-	-	-	-	-	-	1	3	2		
CO4	3	3	-	-	-	-	-	-	-	-	-	1	3	3		
CO5	3	2	-	-	-	-	-	-	-	-	-	-	2	2		

ME4515 PRODUCT LIFECYCLE MANA		L	T	P	C
ME4515	PRODUCT LIFECYCLE MANAGEMENT	3	0	0	3

OBJECTIVES

- To learn about increasing product revenues, reducing product-relatedcosts, maximizing the value of the product portfolio
- To maximize the value of current and future products for both customers and shareholders
- To reduce time to market, improve product quality, reduce prototypingcosts, identify potential sales opportunities
- To maintain and sustain operational serviceability, and reduceenvironmental impacts at end-of-life.

• To maintain and sustain operational serviceability, and reduceen vironmental impacts at end-of-inc.								
UNITI INTRODUCTION TO PLA	И	9						
Introduction to PLM, Need for PLM, opportunities of PLM, Different views of PLM - Engineering Data								
Management (EDM), Product Data Management (PDM), Collaborative Product Definition Management								
(CPDM), Collaborative Product Commerce (CPC), Product Lifecycle Management (PLM). PLM/PDM								
Infrastructure – Network and Communications, Data Management, Heterogeneous data sources and								
olications.								
UNITII PLM/PDM FUNCTIONS A	AND FEATURES	9						
er Functions - Data Vault and Docum	nent Management, Workflow and Process Management, Product							
•	fication and Programme Management. Utility Functions -							
	ansport, data translation, image services, system administration	CO2						
d application integration.								
UNITIII ROLE OF PLM IN INDUSTRIES								
se studies on PLM selection and implen	nentation (like auto: aero, electronic) - other possible sectors, PLM							
ioning, PLM strategy, PLM feasibility s	tudy, change management for PLM, financial justification of PLM,							
riers to PLM implementation, ten step a	pproach to PLM, benefits of PLM for-business, organization, users,	CO3						
oduct or service, process performance								
UNITIV DETAILS OF MODULES IN A PDM/PLM SOFTWARE								
Case studies based on top few commercial PLM/PDM tools – Teamcenter, Windchill, ENOVIA, Aras PLM,								
SAP PLM, Arena, Oracle Agile PLM and Autodesk Vault.								
UNITY BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM SOFTWARE								
	gy (Middleware), Integration with legacy data base, CAD, SLM	CO5						
and ERP								
TOTAL:45PEF								

TEXTBOOKS

- 1. AnttiSaaksvuori and AnselmiImmonen, "Product Lifecycle Management", Springer Publisher, 2008.
- 2. Michael Grieves, "Product Life Cycle Management", Tata McGraw Hill, 2006.
- 2. ArieKarniel and Yoram Reich, Managing the Dynamics of New Product Development Processes: A New Product Lifecycle Management Paradigm, Springer, 2011.

REFERENCEBOOKS

- 3. IvicaCrnkovic, Ulf Asklund and AnnitaPerssonDahlqvist, "Implementingand Integrating Product Data Management and Software ConfigurationManagement", Artech House Publishers, 2003.
- 4. JohnStark, "GlobalProduct:Strategy,Product LifecycleManagementandtheBillionCustomer Question", Springer Publisher,2007.
- 5. JohnStark, "ProductLifecycleManagement:21stCenturyParadigmforProductRealisation", Springer Publisher,2011.

COURSEOUTCOMES Uponcompletion of the course, students will be able to								
CO1	CO1 Explain the history, concepts and terminology of PLM.							
CO2	Apply the functions and features of PLM/PDM.							
CO3	Apply different modules offered in commercial PLM/PDM tools.							
CO4	Implement PLM/PDM approaches for industrial applications.							
CO5	Integrate PLM/PDM with legacy data bases, CAx& ERP systems.							

MAPPINGOFCOsWITHPOsANDPSOs

COs	PROGRAMOUTCOMES(POs)													PROGRAM SPECIFIC OUTCOMES(PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	3	2	3	3	3	2	2	3	3	3	3	
CO2	2	2	3	3	3	3	3	2	2	2	2	2	3	3	
CO3	2	3	3	2	3	3	3	3	2	2	2	2	3	3	
CO4	3	3	2	3	3	2	3	3	2	3	3	3	3	3	
CO5	2	3	3	2	3	2	2	3	2	3	3	3	3	3	

	GENGODG AND MIGERY MENTEL TWO	L	T	P	С
ME4521	SENSORS AND INSTRUMENTATION	3	0	0	3

OBJECTIVES:

- ❖ To understand the concepts of measurement technology.
- ❖ To learn the various sensors used to measure various physical parameters.
- To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development
- ❖ To learn about the optical, pressure and temperature sensor
- ❖ To understand the signal conditioning and DAQ systems

UNIT I	INTRODUCTION	9
of transduce	easurement – Classification of errors – Error analysis – Static and dynamic characteristics rs – Performance measures of sensors – Classification of sensors – Sensor calibration Sensor Output Signal Types.	CO1
UNIT II	MOTION, PROXIMITY AND RANGING SENSORS	9
LVDT – RV	sors – Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, VDT – Synchro – Microsyn, Accelerometer – GPS, Bluetooth, Range Sensors – RF rasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).	CO2
UNIT III	FORCE, MAGNETIC AND HEADING SENSORS	9
_	Load Cell, Magnetic Sensors –types, principle, requirement and advantages: Magneto all Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers.	CO3
UNIT IV	OPTICAL, PRESSURE AND TEMPERATURE SENSORS	9
Diaphragm, Thermocoup	uctive cell, photo voltaic, Photo resistive, LDR – Fiber optic sensors – Pressure – Bellows, Piezoelectric – Tactile sensors, Temperature – IC, Thermistor, RTD, le. Acoustic Sensors – flow and level measurement, Radiation Sensors - Smart Sensors - MEMS & Nano Sensors, LASER sensors.	CO4
UNIT V	SIGNAL CONDITIONING AND DAQ SYSTEMS	9
•	on – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi-channel on – Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing, al monitoring	CO5
	TOTAL: 45 PER	RIODS

TEXT BOOKS

- 1. C. Sujatha ... Dyer, S.A., Survey of Instrumentation and Measurement, John Wiley & Sons, Canada, 2001.
- 2. Hans Kurt Tönshoff (Editor), Ichiro, "Sensors in Manufacturing" Volume 1, Wiley-VCH April 2001.

- 1. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999.
- 2. Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2011.
- 3. Richard Zurawski, "Industrial Communication Technology Handbook" 2nd edition, CRC Press, 2015.

	RSE OUTCOMES						
<u> </u>	Upon completion of the course, students will be able to						
CO1	Recognize with various calibration techniques and signal types for sensors.						
CO2	Describe the working principle and characteristics of force, magnetic, heading, pressure and temperature, smart and other sensors and transducers.						
CO3	Apply the various sensors and transducers in various applications.						
CO4	Select the appropriate sensor for different applications.						
CO5	Acquire the signals from different sensors using Data acquisition systems						

COs				PF	≀OGR∤	AM OU	JTCON	IES (PO	Os)				SPEC OUTC	GRAM CIFIC COMES SOs)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO2	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO3	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO4	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO5	3	2	2	-	-	-	-	-	-	-	-	3	3	-

3.577.4844	ELECTRICAL PRIVING AND A COVIATION	L	T	P	C
ME4522	ELECTRICAL DRIVES AND ACTUATORS	3	0	0	3

OBJECTIVES

- ❖ 1. To familiarize a relay and power semiconductor devices
- ❖ 2. To get a knowledge on drive characteristics
- ❖ 3. To obtain the knowledge on DC motors and drives.
- ❖ 4. To obtain the knowledge on AC motors and drives.
- ❖ 5. To obtain the knowledge on Stepper and Servo motor

UNIT I	RELAY AND POWER SEMI-CONDUCTOR DEVICES	9	
MOSFET, IG	tching Devices – Relay and Types, Switching characteristics -BJT, SCR, TRIAC, GTO, BT and IGCT-: SCR, MOSFET and IGBT - Triggering and commutation circuit - Introduction snubber circuits	CO1	
UNIT II	DRIVE CHARACTERISTICS	9	
	e – Equations governing motor load dynamics – steady state stability – multi quadrant celeration, deceleration, torque, and Direction starting & stopping – Selection of motor.	CO2	
UNIT III	DC MOTORS AND DRIVES	9	
DC Servomot	or - Types of PMDC & BLDC motors - principle of operation- emf and torque equations -		
characteristics and control – Drives- H bridge - Single and Three Phases – 4 quadrant operation – Applications			
UNIT IV	AC MOTORS AND DRIVES	9	
Stator frequence	Induction motor drives – Speed control of 3-phase induction motor – Stator voltage control – cy control – Stator voltage and frequency control – Stator current control – Static rotor resistance	CO4	
	power recovery control.		
UNIT V	STEPPER AND SERVO MOTOR	9	
	or: Classifications- Construction and Principle of Operation – Modes of Excitation-Drive c Sequencer - Applications. Servo Mechanism – DC Servo motor-AC Servo motor –	CO5	
	TOTAL: 45 PER	RIODS	

TEXTBOOKS

- 1. Bimbhra B.S., "Power Electronics", 5th Edition, Kanna Publishers, New Delhi, 2012.
- 2. Mehta V.K. & Rohit Mehta, "Principles of Electrical Machines", 2nd Edition, S.Chand& Co. Ltd., New Delhi, 2016.

- 1. Gobal K. Dubey, "Fundamentals of Electrical Drives", 2nd Edition, Narosal Publishing House, New Delhi, 2001.
- 2. Theraja B.L. & Theraja A.K., "A Text Book of Electrical Technology", 2nd Edition, S.Chand& Co. Ltd., New Delhi, 2012.
- 3. Singh M.D. & Kanchandhani K.B., "Power Electronics", McGraw Hill, New Delhi, 2007

COUI	RSE O	UTCO	MES												
Upon	comple	etion of	the co	urse, st	udents	will be	able to	•							
CO1	Recogn	nize the	princip	oles and	workir	ng of re	lays, dr	ives an	d moto	rs.					
CO2	Explai	Explain the working and characteristics of various drives and motors.													
CO3	Apply Driver	Apply the solid state switching circuits to operate various types of Motors and Driver													
CO4	Interpr	et the p	erforma	ance of	Motors	and Di	rives.								
CO5	Sugges	st the M	lotors a	nd Driv	ers for	given a	pplicati	ons.							
	I			M	APPIN	G OF	COs W	ITH P	Os ANI	D PSOs					
COs					PRO	OGRAN	M OUT	СОМІ	ES (PO	s)			SPEC OUTC	GRAM CIFIC COMES SOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	2	2	2	-	-	-	-	-	_	2	2	-	
CO2	3	1	2	2	2	-	-	-	-	-	-	2	2	-	
CO3	3	1	2	2	2	-	-	-	-	-	-	2	2	-	
CO4	3	1	2	2	2	-	-	-	-	-	-	2	2	-	
CO5	3	1	2.	2	2.							2.	2.		

ME4523

EMBEDDED SYSTEMS & PROGRAMMING

L	T	P	C
3	0	0	3

OBJECTIVES

- Building Blocks of Embedded System
- Various Embedded Development Strategies
- Bus Communication in processors, Input/output interfacing.
- Various processor scheduling algorithms.
- ❖ Basics of Real time operating system and example tutorials to discuss on one real time operating system tool

UNIT I	INTRODUCTION TO EMBEDDED SYSTEMS	9		
Introduction	to Embedded Systems –Structural units in Embedded processor, selection of processor &			
memory dev	vices- DMA - Memory management methods- Timer and Counting devices, Watchdog	CO1		
Timer, Real	Time Clock, In circuit emulator, Target Hardware Debugging.			
UNIT II	EMBEDDED NETWORKING	9		
Embedded	Networking: Introduction, I/O Device Ports & Buses- Serial Bus communication			
protocols R	S232 standard – RS422 – RS 485 - CAN Bus -Serial Peripheral Interface (SPI) – Inter	CO2		
Integrated C	Circuits (I2C) –need for device drivers.			
UNIT III	EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT	9		
Embedded P	Product Development Life Cycle- objectives, different phases of EDLC, Modelling of EDLC;	CO3		
issues in Ha	issues in Hardware-software Co-design, Data Flow Graph, state machine model, Sequential Program			
Model, conc	urrent Model, object oriented Model.			
UNIT IV	RTOS BASED EMBEDDED SYSTEM DESIGN	9		
Introduction	to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS,			
Multiprocess	sing and Multitasking, Preemptive and non-preemptive scheduling, Task communication			
shared mem	ory, message passing-, Inter process Communication – synchronization between processes-	CO4		
semaphores,	Mailbox, pipes, priority inversion, priority inheritance.			
UNIT V	EMBEDDED C PROGRAMMING	9		
Introduction	n-Creating hardware delays using Timer 0 and Timer 1-Reading switches-Adding			
Structure to	the code-Generating a minimum and maximum delay-Example: Creating a portable			
hardware de	elay- Timeout mechanisms-Creating loop timeouts-Testing loop timeouts- hardware	CO5		
timeouts-Te	sting a hardware timeout.			
	TOTAL: 45 PER	RIODS		

- 1. Peckol, "Embedded system Design", John Wiley & Sons,2010
- 2. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013

REFERENCE BOOKS

- 1. Raj Kamal, 'Embedded System-Architecture, Programming, Design', Mc Graw Hill, 2013.
- 2. C.R.Sarma, "Embedded Systems Engineering", University Press (India) Pvt. Ltd, 2013.
- 3. Tammy Noergaard, "Embedded Systems Architecture", Elsevier, 2006.
- 4. Han-Way Huang, "Embedded system Design Using C8051", Cengage Learning, 2009.
- 5. Shibu. K.V, "Introduction to Embedded Systems", 2e, Mcgraw Hill, 2017

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Understand and analyze Embedded systems.
CO2	Suggest an embedded system for a given application.
CO3	Operate various Embedded Development Strategies.
CO4	Study about the bus Communication in processors.
CO5	Acquire knowledge on various processor scheduling algorithms & programming.

COs				P	ROGR	AM O	UTCON	MES (P	POs)				PROG SPEC OUTC (PS	CIFIC OMES
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	-	2	-	-	1	2	-	3	-	1	2	2	2
CO2	1	-	2	-	-	1	2	-	3	-	1	2	2	2
CO3	1	-	2	-	-	1	2	-	3	-	1	2	2	2
CO4	1	-	2	-	-	1	2	-	3	-	1	2	2	2
CO5	1	-	2	-	-	1	2	-	3	-	1	2	2	2

				1			
ME4524	ROBOTICS	L '	T P	C			
ME4524	ROBOTICS	3	0 0	3			
 OBJECTIVES: ❖ To understand the functions of the basic components of a Robot. ❖ To study the use of various types of End of Effectors and Sensors ❖ To impart knowledge in Robot Kinematics and Programming ❖ To learn Robot safety issues and economics. 							
UNIT I	FUNDAMENTALS OF ROBOT			9			
Specifications-Pit	n - Robot Anatomy - Coordinate Systems, Work Envelope Types and Clach, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load-Robot Par or Robots-Different Applications.						
UNIT II	ROBOT DRIVE SYSTEMS AND END EFFECTORS			9			
Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.							
UNIT III	SENSORS AND MACHINE VISION			9			
- Piezo Electric S Sensors Triangula Range Meters, To Slip Sensors, Cam Storage, Lighting	sensor, Principles and Applications of the following types of sensors-Posi Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sens tions Principles, Structured, Lighting Approach, Time of Flight, Range Fin such Sensors, binary Sensors., Analog Sensors, Wrist Sensors, Complian hera, Frame Grabber, Sensing and Digitizing Image Data- Signal Conver Techniques, Image Processing and Analysis-Data Reduction, Segmentation t Recognition, Other Algorithms, Applications- Inspection, Identificate gation.	sors, Fonders, ace Sersion, Ition, Fe	Range Laser nsors, mage eature	CO3			
UNIT IV	ROBOT KINEMATICS AND ROBOT PROGRAMMING			9			
Forward Kinematics, Inverse Kinematics and Difference; Forward Kinematics and Reverse Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Lead through Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs.							
UNIT V	IMPLEMENTATION AND ROBOT ECONOMICS			9			
	olementation of Robots in Industries-Various Steps; Safety Consideration omic Analysis of Robots.	s for l	Robot	CO5			
TOTAL: 45 PER							

- 1. Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2012.
- 2. Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering An Integrated Approach", Prentice Hall, 2003.

REFERENCE BOOKS

- 1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 2013.
- 3. Fu.K.S., Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.
- 4. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.
- 5. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.

COUI	RSE OUTCOMES
	completion of the course, students will be able to
CO1	Explain the concepts of industrial robots, classification, specifications and coordinate systems. Also summarize the need and application of robots in different sectors.
CO2	Illustrate the different types of robot drive systems as well as robot end effectors.
CO3	Apply the different sensors and image processing techniques in robotics to improve the ability of robots.
CO4	Develop robotic programs for different tasks and familiarize with the kinematics motions of robot.
CO5	Examine the implementation of robots in various industrial sectors and interpolate the economic analysis of robots.

COs	PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO2	3	2	2	-	-	-	-	-	-	-	-	3	3	-
СОЗ	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO4	3	2	2	-	-	-	-	-	-	-	-	3	3	-
CO5	3	2	2	-	-	-	-	-	-	-	-	3	3	-

M	$\mathbf{F}4$	525

AUTOMATION IN MANUFACTURING

L	T	P	C
3	0	0	3

COURSE OBJECTIVES:

- ❖ To give a brief exposure to automation principles and control technologies.
- To introduce the concept of fixed automation using transfer lines.
- To train the students in the programmable automation such as CNC and industrial robotics.
- To provide knowledge on the use of automated material handling, storage and data captures.

UNIT I	MANUFACTURING OPERATIONS	9
	production systems, principles and strategies, Product/production relationships, acepts and mathematical models, manufacturing economics.	CO1
UNIT II	CONTROL TECHNOLOGIES	9
•	stems – elements, functions, levels, Continuous Vs discrete control, Computer process control, etors, ADC, DAC, Programmable logic controllers – ladder logic diagrams.	CO2
UNIT III	TRANSFER LINES	9
	oduction lines – applications, Analysis – with and without buffers, automated assembly unbalancing concept.	CO3
UNIT IV	NUMERICAL CONTROL AND ROBOTICS	9
NC - CNC – P – Industrial ap	art programming – DNC – Adaptive control – Robot anatomy – Specifications –End effectors plications.	CO4
UNIT V	AUTOMATED HANDLING AND STORAGE	9
Automated gr	uided vehicle systems, AS/RS, Carousel storage, Automatic data capture - Bar code technology.	COS
	TOTAL: 45 PER	RIODS

TEXTBOOKS

1.Mikell P.Groover, Automation, "Production Systems and Computer Integrated Manufacturing" PHI, 2008.

2. Automation, Production Systems and Computer Integrated Manufacturing by Mikell P. Groover, P.H.I. Learning Private Limited.

REFERENCE BOOKS

1.Mikell P.Groover, Emory W. Zimmers, Jr., "CAD/CAM: Computer - Aided Design and Manufacturing", PHI, 2007

2.Industrial Automation and Robotics by Er. A. K. Gupta and S. K. Arora, University Science Press, Laxmi Publishing Pvt. Ltd.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Ability to understand the requirements of automation in manufacturing systems.
CO2	Knowledge in the techniques of machinery automation, shop floor automation.
СОЗ	Gaining Knowledge about the Automation production lines and Automated Assembly system
CO4	Gaining basic knowledge in CAD systems, NC and CNC part Programming.
CO5	Selection of material handling systems for automated industries.

COs	PROGRAM OUTCOMES (POs)											SPEC OUTC	PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2	-	-	-	-	-	-	3	3	2	2
CO2	3	2	3	2	-	-	-	-	-	-	3	3	2	2
СОЗ	3	2	3	2	-	-	-	-	-	-	2	3	2	2
CO4	3	2	3	2	-	-	-	-	-	-	2	3	2	2
CO5	3	2	3	2	-	-	-	-	-	-	2	3	2	2

ME4531

NON-DESTRUCTIVE TESTING TECHNIQUES

L	T	P	C
3	0	0	3

OBJECTIVES

- ❖ To introduce need and scope of failure analysis and fundamental sources of failures.
- ❖ To learn about non-destructive testing and basic principles of visual inspection.
- ❖ To study about magnetic testing and principles, techniques.
- ❖ To learn the principle of radiography testing and its inspection techniques and methods.
- ❖ To study the acoustic testing principle and technique and instrumentation.

UNIT I	INTRODUCTION	9
	eed and scope of failure analysis. Engineering Disasters and understanding failure analysis. ces of failures. Deficient design. Improper Manufacturing & Assembly. Tree diagram and	CO1
UNIT II	VISUAL INSPECTION	9
Optical aids used f	on-Destructive Testing: An Introduction, Visual examination, Basic Principle, The Eye, for visual inspection, Applications. Liquid Penetrant Testing: Physical principles, Procedure ing, Penetrant testing materials, Penetrant testing methods, Sensitivity, Applications, andards	CO2
UNIT III	MAGNETIC TESTING	9
particle testing, M Equipment Used	Testing, Eddy Current Testing: Magnetism-basic definitions and principle of. magnetic flagnetizing techniques, induced current flow, Procedure used for testing a component, for magnetic particle testing, Sensitivity, Limitations. Eddy Current Testing: Principles, or eddy current testing Techniques. Sensitivity Advanced Eddy Current Test Methods, itations.	CO3
UNIT IV	RADIOGRAPHY TESTING	9
attenuation in the Applications of Neutron radiog Inspection methods.	Ultrasonic Testing: Basic principle, Electromagnetic radiation, Sources, Radiation ne specimen. Effect of radiation in film, Radiographic imaging, Inspection techniques, radiographic inspection, Limitations, Safety in Industrial Radiography, Standards, raphy. Ultrasonic Testing: Basic properties of sound beam, Ultrasonic transducers, ands, Techniques for Normal Beam Inspection, Techniques for Angle Beam Inspection, zation techniques, Ultrasonic flaw detection equipment, Modes of Display, Immersion ations of Ultrasonic Testing, Advantages, Limitations	CO4
UNIT V	ACOUTISTIC TESTING	9
Applications, Stand Codes and Stand Metallographic ex	Testing: Principle of Acoustic Emission Testing, Technique, Instrumentation, Sensitivity, dards. Thermograph: Basic Principles, Detectors and Equipment, Techniques, Applications, lards. In Situ Metallographic Examination: Approach to the Selection of Site for camination, Replication process, Significance of Microstructure observation, Decision ons, Codes and Standards.(digital signal process)	CO5
	TOTAL: 45 PER	IODS

TEXTBOOKS

- 1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2014.
- 2. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010

REFERENCE BOOKS

- 1. ASM Metals Handbook," Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.
- 2. ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing
- 3. Charles, J. Hellier," Handbook of Nondestructive evaluation", McGraw Hill, New York 2001.
- 4. 4. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2 nd Edition New Jersey, 2005

	RSE OUTCOMES
Upon	completion of the course, students will be able to
CO1	Discuss the need and scope of failure analysis and fundamental sources of failures.
CO2	Describe about non-destructive testing and basic principles of visual inspection.
СОЗ	Explain about magnetic testing and principles, techniques.
CO4	Explain the principle of radiography testing and its inspection techniques and methods
CO5	Describe the acoustic testing principle and technique and instrumentation.

COs			PROGRAM OUTCOMES (POs)									PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	-	1	-	-	-	-	2	2	-
CO2	3	3	2	2	2	-	1	-	-	-	-	2	2	-
CO3	3	2	2	2	2	-	1	-	-	-	-	2	2	-
CO4	3	2	2	2	2	-	1	-	-	-	-	2	2	-
CO5	3	2	2	2	2	-	1	-	-	-	-	2	2	-

PLANT LAYOUT AND MATERIAL HANDLING L T 3 0 OBJECTIVE	syste C
OBJECTIVE To explain the basic principles in facilities planning, location, layout designs and material handling UNIT I PLANT LOCATION Introduction, Factors affecting location decisions, Location theory, Qualitative models, Semi-Quantitative models -Composite measure, Brown & Gibbs model, Break-Even analysis model, Single facility location problems – Median model, Gravity location model, Mini-Max model, Multifacility location problems, Network and warehouse location problems. UNIT II PLANT LAYOUT DESIGN	syste
 ❖ To explain the basic principles in facilities planning, location, layout designs and material handling UNIT I PLANT LOCATION Introduction, Factors affecting location decisions, Location theory, Qualitative models, Semi-Quantitative models -Composite measure, Brown & Gibbs model, Break-Even analysis model, Single facility location problems − Median model, Gravity location model, Mini-Max model, Multifacility location problems, Network and warehouse location problems. UNIT II PLANT LAYOUT DESIGN 	C
Introduction, Factors affecting location decisions, Location theory, Qualitative models, Semi- Quantitative models -Composite measure, Brown & Gibbs model, Break-Even analysis model, Single facility location problems — Median model, Gravity location model, Mini-Max model, Multifacility location problems, Network and warehouse location problems. UNIT II PLANT LAYOUT DESIGN	C
models -Composite measure, Brown & Gibbs model, Break-Even analysis model, Single facility location problems – Median model, Gravity location model, Mini-Max model, Multifacility location problems, Network and warehouse location problems. UNIT II PLANT LAYOUT DESIGN	
	9
Need for Layout study, Factors influencing plant layout, Objectives of a good facility layout, Classification	
of layout, Layout procedure – Nadler's ideal system approach, Immer's basic steps, Apple's layout procedure, Reed's layout procedure –Layout planning – Systematic Layout Planning – Information gathering, flow analysis and activity analysis, relationship diagram, space requirements and availability, designing the layout. Utilities planning	
UNIT III COMPUTERIZED LAYOUT PLANNING	
Concepts, Designing process layout – CRAFT, ALDEP, CORELAP – Trends in computerized layout, Algorithms and models for Group Technology.	CO
UNIT IV DESIGN PRODUCT LAYOUT	
Line balancing - Objectives, Line balancing techniques - Largest Candidate rule- Kilbridge and Wester method- RPW method- COMSOAL.,	CO
UNIT V MATERIAL HANDLING AND PACKAGING	
Objectives and benefits of Material handling, Relationship between layout and Material handling, Principles of material handling, Unit load concept, Classification of material handling equipments, Equipment selection, Packaging.	С
TOTAL: 45 PE	RIO

- 1. Francis, R.L., and White, J.A, "Facilities layout and Location", Prentice Hall of India, 2002.
- 2. Tompkins, White et al., "Facilities planning", John Wiley & Sons, inc. 2003.

- 1. Pannerselvam.R, "Production and Operations Management", PHI, 2nd Edition, 2005
- 2. James, Apple, "Material Handling System design", Ronald Press, 1980.

	COURSE OUTCOMES Upon completion of the course, students will be able to							
CO1	CO1 Apply and evaluate appropriate location models for various facility types							
CO2	Effectively design and analyze various facility layouts							
CO3	Apply and analyze various computerized techniques while designing a layout							
CO4	Effectively design and analyze a layout using grouping techniques							
CO5	Implement smooth and cost effective system in the material handling process							

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	3	3	3	3	-	-	_	-	-	-	-	-	-	
CO2	-	3	3	3	-	-	-	_	-	-	-	-	-	-	
CO3	-	-	3	3	3	3	-	-	-	-	3	-	-	-	
CO4	-	-	3	3	3	-	-	-	-	-	3	-	-	-	
CO5	-	-	3	3	-	-	-	-	-	-	-	-	-	-	

		L	T	P	C				
ME4533	SAFETY IN MATERIAL HANDLING	3	0	0	3				
OBJECTI	OBJECTIVE								
❖ To	learn about the safety handling of ropes, hoops etc.								
* То	❖ To gain the knowledge about the conveying mechanisms.								
❖ To	gain the knowledge about hoisting mechanism.								

	8	
UNIT I	MATERIAL HANDLING	9
General safe Prime mover	ty consideration in material handling - Ropes, Chains, Sling, Hoops, Clamps, Arresting gears – s.	CO1
UNIT II	ERGONOMICS OF CONVEYING MECHANISMS	9
_	onsideration in material handling, design, installation, operation and maintenance of Conveying oisting, traveling and slewing mechanisms.	CO2
UNIT III	ERGONOMICS OF HOISTING MECHANISMS	9
•	consideration in material handling, design, installation, operation and maintenance of driving ting mechanism – Traveling mechanism.	CO3
UNIT IV	HANDLING OF HEAVY EQUIPMENTS	9
Selection, op Competent p	peration and maintenance of Industrial Trucks – Mobile Cranes – Tower crane – Checklist - ersons.	CO4
UNIT V	STORAGE OF GOODS AND EQUIPMENTS	9
	Retrieval of common goods of various shapes and sizes in a general store of a big industry. Safety Material Handling – Ergonomics consideration in manual material handling -OSHA Lifting	

TOTAL: 45 PERIODS

TEXTBOOKS

- 1. "Handbook of industrial and system engineering", 2nd edition, Adedeji B. Badiru 2017.
- 2. Material Handling Handbook, volume 1 Raymond 2009.

To learn about the heavy equipment.

❖ To gain the knowledge about goods and equipment.

- 1. Accident Prevention Manual for Industrial Operations, NSC, Chicago.
- 2. James, Apple, "Material Handling System design", Ronald Press, 1980.

	COURSE OUTCOMES Upon completion of the course, students will be able to								
CO1	CO1 Know about the general safety in material handling.								
CO2	otain knowledge about the ergonomic hazards due to conveyer machines								
CO3	Obtain knowledge about the ergonomic hazards due to hoisting.								
CO4	Understand the operations of handling equipment.								
CO5	Know about the storage and safe handling of goods.								

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)										
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	3	3	3	3	ı	-	-	-	-	-	-	-	-
CO2	-	3	3	3	-	-	-	-	-	-	-	1	-	-
CO3	-	-	3	3	3	3	-	-	-	-	3	-	-	-
CO4	-	-	3	3	3	_	-	-	-	_	3	-	-	-
CO5	-	-	3	3	-	-	-	-	-	-	-	-	-	-

ME4534	PROCESS EQUIPMENT DESIGN	L	T	P	С
WILLIOUT	TROCESS EQUITIENT BESTON	3	0	0	3
OBJECTIVE					
	en about the procedure for design of piping,		4		
❖ To kno	w the relevant process design for application for Flow meters and Thermal equip	ome	nı.		
UNIT I	PROCESS DESIGN OF PIPING, FLUID MOVING DEVICES AND FLO	W N	AET:	ERS	9
pump performar	ocess design of piping, NPSHA &NPSHR, Power required by pump, evaluation of ce when handling viscous liquids, Power required in Fan, Blower and adiabatic co cess design of Orifice meter, Rotameter etc.			•	CO
UNIT II	PROCESS DESIGN OF HEAT EXCHANGERS				9
Shell & Tube h	eat exchangers, Functions of various parts of shell & Tube Heat exchanger, Go	ener	al de	esign	
	& tube heat exchanger, Criteria of selection among Fixed Tube sheet, U Tube & F				
heat exchanger,	Process design of without phase change heat exchanger, Process design of conde	nsei	, Cri	teria	
	Horizontal and vertical condenser, Process design of Kettle type &Thermosyph				
and vaporizes, T	inker's flow model, Air cooled heat exchangers and air heaters, plate heat exchangers	ngei	s, etc	c.	
UNIT III	PROCESS DESIGN OF DISTILLATION COLUMN				9
of key componed to column, Advanted binary distillation by Formatte distillation by Formatte drop of the contrainment, etc.	iteria of selection, Selection of equipment for distillation, Distillation column desirents for multicomponent distillation, Determination of operating pressure for ages & disadvantages of vacuum distillation, Determination of nos. of theoretical by McCabe Thiele method Determination of nos. of theoretical stages for multiples of the selection of trays, Calculations for tower sieve tray tower, Checking of conditions for weeping, down comer flow, tray efficiency, Jet Flooding & down comer Flooding, Different types of we ower, their selection criteria	or di cal s ti-co er di odin	istilla stage ompo amet g, li	ation s for onent er & quid	
UNIT IV	PROCESS DESIGN OF ABSORBERS				9
tower type absordiameter & prescriteria of liquid	iteria for selection among different types of absorption equipment, Process Designer: Determination of actual amount of solvent, Selection of packing, Determination of NtoG, HtoG & height of packing, Process design distributors, redistributors & packing support, Process design of Spray chamber of Senturi Scrubber.	tion &	of to	ower ction	СО
UNIT V	PROCESS DESIGN OF EXTRACTOR				9
multistage extra	cations of liquid-liquid extraction, choice of solvent, Process design of courtor, Selection criteria among different types of extractor, Process design of mixed tower type extractor, Guidelines for the design of other types of extractors				
	TOTA	AL:	45 P	PERI	OD:

- 1. Ray Sinnott, Gavin Towler, Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design, Butterworth Heinemann, 2008.
- 2. Introduction to Process Engineering and Design by S B Thakore and B I Bhatt, Tata McGraw Hill, 1st Edition, 2007.

REFERENCE BOOKS

- 1. Brownell and Young, Process Vessel Design, Wiley Eastern, 1977.
- 2. M. S. Peters and K. D. Timmerhaus, Plant Design and Economics for Chemical Engineers, 4th ed., McGraw Hill, New York, 1991.
- 3. Ludwig, E. E., Applied process design for chemical and petrochemical plants, volume 1,2 & 3, Third Edition, Butterworth- Heinemam,1997

COURSE OUTCOMES

Upon completion of the course, students will be able to

- CO1 Design process equipment and modify the design of existing equipment to new process conditions or new required capacity.
- CO2 Build a bridge between theoretical and practical concepts used for designing the equipment in any process industry.
- **CO3** Create understanding of equipment design.
- **CO4** Review the importance of design concepts in process industry.
- CO5 Design Calculation related to heat exchange equipment and their performance criteria.

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	-	1	-	ı	-	2	-	2	2	-
CO2	3	2	2	2	-	-	-	1	-	2	-	2	2	-
CO3	3	2	2	2	-	-	-	-	-	2	-	2	2	-
CO4	3	2	2	2	-	-	-	-	-	2	-	2	2	-
CO5	3	2	2	2	-	-	-	1	-	2	-	2	2	-

ME4535	DESIGN OF PRESSURE VESSELS	L	T	P	C					
11114333	DESIGN OF TRESSERE VESSEES	3	0	0	3					
OBJECTIVES										
To under	stand the Mathematical knowledge to design pressure vessels and piping									
To under	stand the ability to carry of stress analysis in pressure vessels and piping									
UNIT I	INTRODUCTION				3					
Methods for determining stresses - Terminology and Ligament Efficiency - Applications.										
UNIT II STRESSES IN PRESSURE VESSELS										
	Introduction - Stresses in a circular ring, cylinder - Dilation of pressure vessels, Membrane stress Analysis of Vessel - Cylindrical, spherical and, conical heads - Thermal Stresses - Discontinuity stresses in pressure vessels.									
UNIT III	DESIGN OF VESSELS				15					
at a variable Thick	indrical self-supporting process columns - Supports for short vertical vessels - Stress transition section in a cylindrical vessel, about a circular hole, elliptical open Pressure Vessel Design.				CO3					
UNIT IV	BUCKLING AND FRACTURE ANALYSIS IN VESSELS				8					
Buckling phenomenon - Elastic Buckling of circular ring and cylinders under external pressure - collapse of thick walled cylinders or tubes under external pressure - Effect of supports on Elastic Buckling of Cylinders - Buckling under combined External pressure and axial loading.										
UNIT V	PIPING				4					
Introduction - F	low diagram - piping layout and piping stress Analysis.				CO5					

- 1. John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publishers and Distributors, 1987.
- 2. Henry H. Bedner, "Pressure Vessels, Design Hand Book", CBS publishers and Distributors, 1987.

REFERENCE BOOKS

1. Stanley, M. Wales, "Chemical process equipment, selection and Design". Buterworths series in Chemical Engineering, 1988.

TOTAL: 45 PERIODS

- 2. William. J., Bees, "Approximate Methods in the Design and Analysis of Pressure Vessels and Piping", Pre ASME Pressure Vessels and Piping Conference, 1997.
- 3. Sam Kannapan, "Introduction to Pipe Stress Analysis". John Wiley and Sons, 1985.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Know the methods to determine stresses.
CO2	Determine the stresses in the pressure vessels and pipes.
CO3	Apply the mathematical fundamental for the design of pressure vessels and pipes.
CO4	Analyse and design of pressure vessels and piping.
CO5	Know about the stress analysis of pipings.

COs				PROGRAM SPECIFIC OUTCOMES (PSOs)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	-	-	-	-	-	-	-	-	3	1
CO2	3	3	2	-	-	-	-	-	-	-	-	-	3	1
CO3	3	3	2	-	-	-	-	-	-	-	-	-	3	1
CO4	3	3	2	-	-	-	-	-	-	-	-	-	3	1
CO5	3	3	2	-	-	-	-	-		-	-	-	3	1

Т	, , , , , , , , , , , , , , , , , , ,							
ME4541	AUTOMOBILE ENGINEERING $ \begin{array}{c c} L & T \\ \hline 3 & 0 \end{array} $	P C 0 3						
OBJECTIVES								
	stand the construction and working principle of various parts of an automobile.							
❖ To have	the practice for assembling and dismantling of engine parts and transmission system	n.						
UNIT I	VEHICLE STRUCTURE AND ENGINES	9						
Types of automobiles, vehicle construction and different layouts, chassis, frame and body, Vehicle								
aerodynamics (various resistances and moments involved), IC engines –components functions and								
materials, variab	ole valve timing (VVT).							
UNIT II	ENGINE AUXILIARY SYSTEMS	9						
Electronically co	ontrolled gasoline injection system for SI engines, Electronically controlled diesel							
injection system	(Unit injector system, Rotary distributor type and common rail direct injection							
system), Electro	onic ignition system (Transistorized coil ignition system, capacitive discharge	CO2						
ignition system)	, Turbo chargers (WGT, VGT), Engine emission control by three way catalytic							
converter system	n, Emission norms (Euro and BS).							
UNIT III	TRANSMISSION SYSTEMS	9						
Clutch-types and	d construction, gear boxes- manual and automatic, gear shift mechanisms, Over							
drive, transfer b	ox, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints,							
Differential and	rear axle, Hotchkiss Drive and Torque Tube Drive.	CO3						
UNIT IV	STEERING, BRAKES AND SUSPENSION SYSTEMS	9						
Steering geomet	ry and types of steering gear box-Power Steering, Types of Front Axle, Types of							
Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS),								
electronic brake	force distribution (EBD) and Traction Control.	CO4						
UNIT V	ALTERNATIVE ENERGY SOURCES	9						
Use of Natural	Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Hydrogen in							

TOTAL: 45 PERIODS

CO5

TEXTBOOKS

the students.

- 1. Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New Delhi, 1997.
- 2. Jain K.K. and Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New Delhi, 2002.

Automobiles- Engine modifications required –Performance, Combustion and Emission Characteristics

of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell Note: Practical

Training in dismantling and assembling of Engine parts and Transmission Systems should be given to

- 1. Newton ,Steeds and Garet, "Motor Vehicles", Butterworth Publishers,1989.
- 2. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart –Will Cox Company Inc, USA ,1978.
- 3. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
- 4. Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.

	RSE OUTCOMES								
Opon	Upon completion of the course, students will be able to								
CO1	Understand the various vehicle structure and Components of IC engine.								
CO2	Gain Knowledge in various auxiliary systems used in an automobile.								
CO3	Understand the principle and application of Transmission systems in an automobile.								
CO4	Demonstrate the use of steering, braking and suspension systems in an automobile								
CO5	Apply the advantages of various alternative energy sources.								

COs		PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	1	-	-	-	-	-	-	-	-	2	-	-	
CO2	3	-	1	-	-	-	-	-	-	-	-	2	-	-	
CO3	3	-	1	-	-	-	-	-	-	-	-	2	-	-	
CO4	3	-	1	-	-	-	-	-	-	-	-	2	-	-	
CO5	3	-	1	-	-	2	3	-	-	-	-	2	-	-	

ME4542	AUTOMOTIVE MATERIALS, COMPONENTS, DESIGN AND	L	T	P	C				
WIE4342	TESTING	3	0	0	3				
COURSE O	DBJECTIVES:								
To under	estand basics of automotive components and automotive materials.								
To under	estand the automotive design, testing and validation								
UNIT I	ENGINEERING MATERIALS AND MATERIALS FOR ENGINE AND TRANSMISSION				9				
Classes of engineering materials – the evolution of engineering materials, Definition of materials properties, displaying material properties using materials selection charts, Forces for change in materials selection and design, Materials and the environment-selection of materials for automotive applications. Materials selection for IC engines: Piston, piston rings, cylinder, Engine block, Connecting rod, Crank shaft, Fly wheels, Gear box, Gears, Splines, Clutches.									
UNIT II	ELECTRONIC MATERIALS FOR AUTOMOTIVE APPLICATION				9				
Materials for sensors and electronic devices meant for Engine Speed and Crank Position, Throttle position sensor, Manifold Absolute Pressure, Temperature Sensor, Oxygen Sensor, Piezoelectric Sensor, Ultrasonic Sensor and Dew Sensor. Sensor Materials and Technologies.									
UNIT III AUTOMOTIVE COMPONENTS									
Engine block	- Cylinder head Crank shaft, Connecting rod, Camshaft, Cylinder Liners, Piston r	ing -	Clutc	h-					
fluid flywhee and types of	struction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, I, torque converter, propeller shaft, slip joints, universal joints - Differential - Steer steering gear box-Power Steering, Types of Front Axle, Types of Suspensing Hydraulic Braking Systems, Antilock Braking System (ABS), electronic	ing ge	omet ystem	ry is,	CO3				
UNIT IV	VEHICLE BODY DESIGN				9				
Types of Car body – Saloon, convertibles, Limousine, Estate Van, Racing and Sports car -car body terminology – Visibility- regulations, driver's visibility, improvement in visibility and tests for visibility. Driver seat design -Car Body Construction – Various panels in car bodies. Safety: Safety design, safety equipment for cars. Types of commercial vehicle bodies – Light commercial vehicle body. Construction details of Flat platform body, Tipper body and Tanker body – Dimensions of driver's seat in relation to controls -Drivers cab design.									
UNIT V	VEHICLE TESTING				9				
Wind tunnel test requirements - Ground boundary simulation - wind tunnel selection and Reynolds number capability, model details, mounting of model, Test procedure. Body test - Dynamics simulation sled testing - Dolly roll over test - Dolly roll over fixture - vehicle roof strength test - Door system crash test.									
TOTAL: 45 PER									

1.W.H. course& D.L. Anglin, "Automotive Mechanics" TMG publishing company, 2004

2. Gladius Lewis, "Selection of Engineering Materials", Prentice Hall Inc. New Jersey USA, 1995.

- 1. Automotive Handbook, Bosch. Website: www.mainindia.com/Draft, AIS standards.
- 2.ASM Handbook. "Materials Selection and Design", Vol. 20- ASM Metals Park Ohio.USA, 1997.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	To understand the basics of materials and materials for engine and transmission
CO2	To understand the electronic materials used in automotive applications
соз	To understand the basic automotive components
CO4	To understand the basic design on vehicle body and interiors
CO5	To understand the vehicle testing and validation

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	2	1			-	-	1	-	1	3	2	3	
CO2	3	1	2	2	2	2	2	-	1	-	1	3	2	3	
СОЗ	3	1	2	1	-	-	-	-	-	-	1	3	2	3	
CO4	3	1	2	1	-	-	-	-	-	-	1	3	2	3	
CO5	3	1	2	2	1	2	3	-	1	-	1	3	2	3	

ME4543	POWER PLANT ENGINEERING	L	T	P						
		3	0	0	3					
OBJECTI	VES									
	ding an overview of Power Plants and detailing the role of Mechanical Engineers in their enance	r ope	eratio	n ar	ıd					
UNIT I	COAL BASED THERMAL POWER PLANTS				9					
Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems										
UNIT II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS										
	Dual & Brayton Cycle - Analysis & Optimization. Components of Diesel and Gas Turs. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.	bine		•	CO2					
UNIT III	NUCLEAR POWER PLANTS				9					
Reactors: B	iclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nucleoiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANDU Deuterium-NDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nucleoile.	Urar		•	C O 3					
UNIT IV	POWER FROM RENEWABLE ENERGY				9					
Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power system.										
UNIT V	ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLAN	NTS			9					
merits & der	types, Load distribution parameters, load curve, Comparison of site selection criteria, renerits, Capital & Operating Cost of different power plants. Pollution control technologicaste Disposal Options for Coal and Nuclear Power Plants.		ve .	•	CO5					

- 1. El-Wakil. M.M., "Power Plant Technology", Tata McGraw Hill Publishing Company Ltd., 2010.
- 2. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw Hill, 1998.

REFERENCE BOOKS

1. Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw – Hill Publishing Company Ltd., 2008.

TOTAL: 45 PERIODS

	COURSE OUTCOMES Upon completion of the course, students will be able to								
CO1	Ability to comprehend the Layout of modern coal power plant and its major components, Binary Cycles and Cogeneration systems.								
CO2	Able to understand the concept of Otto, Diesel, Dual & Brayton Cycle - Analysis & optimization and Components of Diesel and Gas Turbine power plants								
CO3	Ability to know the Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors: BWR, PWR, CANDU, Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants								
CO4	Ability to comprehend the concept of Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, SPV, Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.								
CO5	To understand the concept of Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants								

COs			PROGRAM SPECIFIC OUTCOMES (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	-	-	-	3	-	1	1	2	3	2
CO2	3	3	3	3	-	-	-	3	-	1	1	2	3	2
CO3	3	3	3	3	-	-	-	3	-	1	1	2	3	2
CO4	3	3	3	3	-	-	-	3	-	1	1	2	2	3
CO5	3	3	3	3	-	-	-	3	-	1	1	2	3	3

N. 67.4.4		L	T	P	С							
ME4544	REFRIGERATION AND AIR CONDITIONING	3	0	0	3							
COURSE OB	JECTIVES:											
and co	lerstand the underlying principles of operations in different Refrigeration & Air mponents.	cond	itionii	ng sys	tems							
❖ To provide knowledge on design aspects of Refrigeration & Air conditioning systems												
UNIT I INTRODUCTION												
Introduction to Refrigeration - Unit of Refrigeration and C.O.P.— Ideal cycles- Refrigerants Desirable properties — Classification - Nomenclature - ODP & GWP.												
UNIT II VAPOUR COMPRESSION REFRIGERATION SYSTEM												
heating- effects	sion cycle: p-h and T-s diagrams - deviations from theoretical cycle - subcost of condenser and evaporator pressure on COP- multipressure system - l Cascade systems - problems. Equipment's: Type of Compressors, Condensators	ow to	empei	rature								
UNIT III	OTHER REFRIGERATION SYSTEMS				9							
	ples of Vapour absorption systems and adsorption cooling systems — Steam jet ration systems. Thermoelectric refrigeration - Air refrigeration - Magnetic - Vorton systems.				CO3							
UNIT IV	PSYCHROMETRIC PROPERTIES AND PROCESSES				9							
Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature, Psychrometric chart; Psychrometric of air-conditioning processes, mixing of air streams.												
UNIT V	AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION				9							
Air conditionir	ng loads: Outside and inside design conditions; Heat transfer through structure,	Sola	r radia	ation,								

1. Arora, C.P., "Refrigeration and Air Conditioning", 3rd edition, McGraw Hill, New Delhi, 2010.

Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls:

Temperature, Pressure and Humidity sensors, Actuators & Safety controls.

2. Stoecker, W.F. and Jones J. W., "Refrigeration and Air Conditioning", McGraw Hill, New Delhi, 1986.

TOTAL: 45 PERIODS

- 1. ASHRAE Hand book,
- 2. Fundamentals, 2010 2. Jones W.P., "Air conditioning engineering", 5th edition, Elsevier Butterworth-Heinemann, 2007
- 3. Roy J. Dossat, "Principles of Refrigeration", 4th edition, Pearson Education Asia, 2009.

COURSE OUTCOMES

Upon completion of the course, students will be able to:

CO1	Explain the basic concepts of Refrigeration
CO2	Explain the Vapor compression Refrigeration systems and to solve problems
CO3	Discuss the various types of Refrigeration systems.
CO4	Calculate the Psychrometric properties and its use in Psychrometric processes
CO5	Explain the concepts of Air conditioning and to solve problems

COs				PRO	OGRAN	M OUT	COME	ES (POs	s)				SPE OUT (PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	1	1	-	-	-	-	-	-	-	1	2	1		
CO2	3	2	1	1	-	-	-	-	-	-	-	1	2	1		
CO3	3	2	1	1	-	-	-	-	-	-	-	1	2	1		
CO4	3	2	1	1	-	-	-	-	-	-	-	1	2	1		
CO5	3	2	1	1	-	-	-	-	-	-	-	1	2	1		

		L	T	P	C
ME4545	MEASUREMENTS AND CONTROLS	3	0	0	3

OBJECTIVES

- ❖ To understand the concepts of measurement technology
- To understand the concept of mathematical modeling using block diagram and signal flow graph techniques
- To study time response and frequency response of closed loop control systems
- To learn operating principle of mechanical sensors and transducers used to measure mechanical parameters
- ❖ To familiarize with the principle of various temperature and pressure measurement techniques

UNIT I	INTRODUCTION	9
•	ynamic characteristics of measurement systems - standards and calibration - error and nalysis-statistical analysis of data-and curve fitting	CO
UNIT II	SYSTEMS AND REPRESENTATION	9
Basic elements ystems — Traflow graphs.	nts in control systems: – Open and closed loop systems – Electrical analogy of mechanical ansfer function – AC and DC servomotors – Block diagram reduction techniques – Signal	CO2
UNIT III	TIME AND FREQUENCY RESPONSE	9
coefficients – time domain	e: – Time domain specifications – Types of test input -I and II order system response – Error - Generalized error series – Steady state error – Correlation between frequency domain and specifications- Frequency response: – Bode plot – Polar plot – Determination of closed loop in open loop response	CO3
UNIT IV	MECHANICAL MEASUREMENTS	9
type and Non – Force meas	t of displacement-Resistive-Inductive-Capacitive Methods Velocity Measurement-Contact a-contact type Acceleration measurement-Potentiometric type-LVDT type-Piezoelectric type surement-Hydraulic-Pneumatic-Strain gauge- Magnetostrictive Load Cell Measurement of e rotating-Inline stationary-Proximity type.	CO4
UNIT V	MEASUREMENT OF TEMPERATURE AND PRESSURE	9
detector-Theri fundamentals-	measurement-Bimetallic thermometer-Filled system thermometer-Resistance temperature mistor-Thermocouple .Radiation fundamentals-Pyrometers Pressure measurement-Pressure .Manometer and its types-Elastic and Electrical pressure transducers-Vacuum pressure .McLeod gauge-Thermal conductivity gauge-Pressure gauge calibration-Dead weight tester	CO5
	TOTAL: 45 PERI	ODS

TEXTBOOKS

- 1. Ernest O Doebelin, "Measurement Systems Applications and Design", Tata McGraw-Hill, 2009.
- 2. Sawhney A K and Puneet Sawhney, "A Course in Mechanical Measurements and Instrumentation and Control", 12th edition, Dhanpat Rai& Co, New Delhi, 2013.
- 3. Nagarath, I.J. and Gopal, M., "Control Systems Engineering", New Age International Publishers, 2017.
- 4. Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2014.

- 1. Patranabis. D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010.
- 2. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999.

	COURSE OUTCOMES Upon completion of the course, students will be able to						
CO1	Explain various characteristics, standards, calibration and types of errors in measurement systems.						
CO2	Develop mathematical models for different types of system by using block diagram and signal flow graph.						
CO3	Determine the time response specifications along with error coefficients for closed loop control system.						
CO4	Illustrate the working principle and applications of different types of Mechanical sensors and transducers.						
CO5	Illustrate the working principle and applications of different types of instruments for measurement of temperature and pressure.						

	MAPPING OF COs WITH POs AND PSOs														
COs	PROGRAM OUTCOMES (POs)											PROG SPEC OUTC (PS	CIFIC OMES		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	2	-	-	-	-	-	-	-	2	3	-	
CO2	3	3	2	2	-	-	-	-	-	-	-	2	3	-	
CO3	3	3	2	2	-	-	-	-	-	-	-	2	3	-	
CO4	3	3	2	2	-	-	-	-	-	-	-	2	3	-	
CO5	3	3	2	2	-	-	-	-	-	-	-	2	3 -		

N. F. L. F. L.	NOVEMBARYONAL MACKINING BROOKEGE	L	T	P	C
ME4551	NON-TRADITIONAL MACHINING PROCESSES	3	0	0	3

OBJECTIVES

- ❖ To learn about various Non-traditional Machining processes, their process parameters and influence on the performance of end components
- ❖ To select appropriate machining technique for machining advanced materials
- ❖ To select appropriate machining technique for machining components with very tight tolerances
- ❖ To update the students with latest technological developments and research trends in the field of Non-traditional Machining.

UNIT I INTRODUCTION AND MECI	HANICAL ENERGY BASED PROCESSES	9			
Unconventional machining Process – Need – classification – merits, demerits and applications. Abrasive Jet Machining – Water Jet Machining – Water Jet Machining – Ultrasonic Machining. (AJM, WJM, AWJM and USM). Working Principles – equipment used – Process parameters – MRR Applications. Numerical Problems					
UNIT II THERMAL AND ELECTRICATE	AL ENERGY BASED PROCESSES	9			
Electric Discharge Machining (EDM) – Wire cut EDM – Working Principle equipments - Process parameters Surface Finish and MRR- electrode / Tool – Power and control Circuits-Tool Wear – Dielectric – Flushing — Applications. Laser beam machining and drilling, Plasma arc machining (PAM), Electron Beam Machining (EBM) and Ion Beam Machining (IBM). Principles – Equipment – Types - Beam control techniques – Applications. Numerical Problems					
UNIT III CHEMICAL AND ELECTRO-	CHEMICAL ENERGY BASED PROCESSES	9			
Machining (ECM) - equipments - Process Par	chniques of applying maskants - Principles of Electro Chemical ameters, MRR and Surface Finish. Electro Chemical Grinding ectro Stem Drilling (ESD) - Applications. Numerical Problems	CO3			
UNIT IV ADVANCED SURFACE FINIS	HING PROCESSES	9			
Abrasive flow machining, chemo-mechanical polishing, magnetic abrasive finishing, magneto rheological finishing, magneto rheological abrasive flow finishing, plasma assisted polishing: their working principles, equipments, effect of process parameters, applications, advantages and limitations- Recent developments in finishing process.					
UNIT V RECENT TRENDS IN NON-T	RADITIONAL MACHINING PROCESSES	9			
Recent developments in non-traditional machining processes, their working principles, equipments, effect of process parameters, applications, advantages and limitations. Comparison of non-traditional machining processes, Bio Machining, Ice Jet Machining, Elastic Emission Machining (EEM), Hybrid Machining Process – Micromachining and Nano machining, Non Traditional Machining in Industry 4.0.					

TOTAL: 45 PERIODS

TEXTBOOKS

- 1. Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd. New Delhi, 2009
- 2. Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw Hill, New Delhi, 2017.

- 1. Benedict. G.F. "Nontraditional Manufacturing Processes", Marcel Dekke Inc., New York, 2019.
- 2. Mc Geough, "Advanced Methods of Machining", Chapman and Hall, London 1998.
- 3. Paul De Garmo, J.T.Black, and Ronald. A.Kohser, "Material and Processes I Manufacturing", Prentice Hall of India Pvt. Ltd., 8thEdition, New Delhi, 2001.

COURSE OUTCOMES

Upon	Upon completion of the course, students will be able to							
CO1	Classify various Mechanical Energy based Non Traditional Machining processes.							
CO2	Compare various Thermal energy and Electrical energy based Non Traditional Machining processes.							
CO3	Summarize various chemical and electro-chemical energy based Non Traditional Machining processes.							
CO4	Explain various Nano Finishing processes.							
CO5	Gain knowledge about recent trends and developments in Non Traditional Machining							

		PROGRAM OUTCOMES (POs)							SPEC OUTC	GRAM CIFIC OMES Os)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	1	1	-	-	-	-	-	2	3	2
CO2	2	2	2	2	1	1	-	-	-	-	-	2	3	2
CO3	2	2	2	2	1	1	-	-	-	-	-	2	3	2
CO4	2	2	2	2	1	1	-	-	-	-	-	2	3	2
CO5	2	2	2	2	1	1	-	-	-	-	-	2	3	2

		ı							
ME455	2 TURBO MACHINES	L	T	P	C				
		3	0	0	3				
OBJECTIVES ❖ To understand the various systems, principles, operations and applications of different types of turbo machinery components.									
UNIT	PRINCIPLES				9				
Energy transfer between fluid and rotor-classification of fluid machinery,-dimensionless parameters- specific speed-applications-stage velocity triangles-work and efficiency.									
UNIT	Γ II CENTRIFUGAL FANS AND BLOWERS 9								
• •	- stage and design parameters-flow analysis in impeller blades-volute and diffusers, losses, characteristic and selection, fan drives and fan noise.								
UNIT I	II CENTRIFUGAL COMPRESSOR				9				
Construction	n details, impeller flow losses, slip factor, diffuser analysis, losses and performance	curve	s.		CO3				
UNIT	V AXIAL FLOW COMPRESSOR				9				
Stage veloc	ty diagrams, enthalpy-entropy diagrams, stage losses and efficiency, work done simple	e stag	e de	sign					
problems aı	d performance characteristics.				CO4				
UNIT	AXIAL AND RADIAL FLOW TURBINES				9				
Stage veloc	ity diagrams, reaction stages, losses and coefficients, blade design principles, testing	and							
performano	e characteristics.				CO5				
	TOT	AL:	45 P	ERI	ODS				
TEXTBO	OKS								
•	M., Turbines, Compressor and Fans, Tata McGraw Hill Publishing Company, 1996. Fans, Fans; design and operation of centrifugal, axial-flow, and cross-flow fansPergamor	n Pres	s, 19	973.					
REFEREN	CE BOOKS								
1. Earl Loga	n, Jr., Hand book of Turbomachinery, Marcel Dekker Inc., 1992.								
2. Dixon, S	., "Fluid Mechanics and Thermodynamics of Turbomachinery", Pergamon Press, 1990.								
3. Shepherd	D.G., "Principles of Turbomachinery", Macmillan, 1969.								
	V., "Gas Turbines", Tata McGraw Hill Pub. Co., 1999.								
5. Gopalakr	shnan .G and Prithvi Raj .D, "A Treatise on Turbo machines", Scifech Publications (Indi	a) Pv	t. Lt	d., 2	.002				
COURSE	OUTCOMES								
Upon con	pletion of the course, students will be able to								
CO1 Un	Understand the principles of Energy transfer and velocity triangles.								
CO2 D1	2 Draw the characteristic curves of centrifugal fans and blowers								
CO3 An	lyse the performance curves of centrifugal compressor								
CO4 An	lyse the performance curves of centrifugal compressor axial flow compressor								
	Learn about blade design principles and performance curves of axial and radial flow turbines								
CO5 Lea	rn about blade design principles and performance curves of axial and radial flow turb	oines							

COs						P	ROGR	AM OI	UTCO	MES (P	POs)		PROC SPEC OUTC (PS	CIFIC OMES
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2	1	_	-	1	_	-	_	2	3	-
CO2	3	2	3	2	-	-	-	-	-	-	-	2	3	-
CO3	3	2	3	2	-	-	-	-	-	-	-	2	3	-
CO4	3	2	3	2	-	-	-	-	-	-	-	2	3	-
CO5	3	2	3	2	-	-	-	ı	-	-	-	2	3	-

ME4553	DECICN OF TO A NUMBERON EVETEME	L	T	P	C
WIE4555	DESIGN OF TRANSMISSION SYSTEMS	3	0	0	3

OBJECTIVES

- To gain knowledge on the principles and procedure for the design of Mechanical power Transmission components.
- To understand the standard procedure available for Design of Transmission of Mechanical elements
- ❖ To learn to use standard data and catalogues (Use of P S G Design Data Book permitted)

(000						
UNIT I	DESIGN OF FLEXIBLE ELEMENTS	9				
	belts and pulleys - Selection of V belts and pulleys - Selection of hoisting wire ropes and pulleys ansmission chains and Sprockets.	CO1				
UNIT II	SPUR GEARS AND PARALLEL AXIS HELICAL GEARS	9				
Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects - Fatigue strength - Factor of safety - Gear materials - Design of straight tooth spur & helical gears based on strength and wear considerations - Pressure angle in the normal and transverse plane - Equivalent number of teeth - forces for helical gears.						
UNIT III	BEVEL, WORM AND CROSS HELICAL GEARS	9				
dimensions of materials-forces	gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the pair of straight bevel gears. Worm Gear: Merits and demerits, terminology. Thermal capacity, and stresses, efficiency, estimating the size of the worm gear pair. Cross helical: Terminology-timating the size of the pair of cross helical gears.	CO3				
UNIT IV	GEAR BOXES	9				
box - Design o	gression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear f multi speed gear box for machine tool applications - Constant mesh gear box - Speed reducer speed gear box, Fluid Couplings, Torque Converters for automotive applications.					
UNIT V CAMS, CLUTCHES AND BRAKES						
Cam Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches - axial clutches-cone clutches - internal expanding rim clutches - Electromagnetic clutches. Band and Block brakes - external shoe brakes - Internal expanding shoe brake.						
	TOTAL: 45 PER	IODS				

TEXTBOOKS

- 1. Bhandari V B, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016.
- 2. Joseph Shigley, Richard G. Budynas and J. Keith Nisbett "Mechanical Engineering Design", 10th Edition, Tata McGraw-Hill, 2015.

- 1. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2003.
- 2. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003. 3. Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.
- 4. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005
- 5. Sundararajamoorthy T. V, Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Apply the concepts of design to belts, chains and rope drives.
CO2	Apply the concepts of design to spur, helical gears.
CO3	Apply the concepts of design to worm and bevel gears.
CO4	Apply the concepts of design to gear boxes.
CO5	Apply the concepts of design to cams, brakes and clutches.

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	-	-	-	-	-	-	-	-	3	3	1
CO2	3	2	3	-	-	-	-	-	-	-	-	3	3	1
CO3	3	2	3	-	-	-	-	-	-	-	-	3	3	1
CO4	3	2	3	-	-	-	-	-	-	-	-	3	3	1
CO5	3	2	3	-	-	-	-	-	-	-	-	3	3	1

ME4554	
WILL-1994	

FINITE ELEMENT ANALYSIS

L	T	P	C
3	0	0	3

OBJECTIVES

- ❖ To introduce the concepts of Mathematical Modeling of Engineering Problems.
- ❖ To appreciate the use of FEM to a range of Engineering Problems.

UNIT I	INTRODUCTION
storical Bacl	kground – Mathematic

His cal Modeling of field problems in Engineering – Governing Equations -Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.

CO₁

UNIT II ONE-DIMENSIONAL PROBLEMS

9

One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements - Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation – Transverse deflections and Natural frequencies of beams.

CO₂

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

9

Second Order 2D Equations involving Scalar Variable Functions – Variational formulation –Finite Element formulation – Triangular elements – Shape functions and element matrices and vectors. Application to Field Problems – Thermal problems – Torsion of Non circular shafts –Quadrilateral elements – Higher Order CO3 Elements.

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

9

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces and temperature effects – Stress calculations – Plate and shell elements.

CO4

UNIT V ISOPARAMETRIC FORMULATION

9

Natural co-ordinate systems – Isoparametric elements – Shape functions for iso parametric elements – One and two dimensions – Serendipity elements – Numerical integration and application to plane stress problems – Matrix solution techniques – Solutions Techniques to Dynamic problems – Introduction to Analysis Software

CO₅

TOTAL: 45 PERIODS

TEXTBOOKS

- Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2005
- Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007.

- Bhatti Asghar M, "Fundamental Finite Element Analysis and Applications", John Wiley & Sons, 2005 (Indian Reprint 2013)*
- 2. Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, Prentice Hall College Div, 1990
- 3. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002
- Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 2004

Upon completion of the course, students will be able to:

CO1	Summarize the basics of finite element formulation.
CO2	Apply finite element formulations to solve one dimensional Problems.
CO3	Apply finite element formulations to solve two dimensional scalar Problems
CO4	Apply finite element method to solve two dimensional Vector problems
CO5	Apply finite element method to solve problems on iso parametric elements and dynamic Problems.

COs	PROGRAM OUTCOMES (POs)											PROG SPEC OUTCO (PSO	IFIC OMES	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	-	-	-	-	-	-	1	1	3	3
CO2	3	3	2	-	-	-	-	-	-	-	1	1	3	3
CO3	3	3	2	-	_	-	-	-	-	-	1	1	3	3
CO4	3	3	2	-	_	-	-	-	-	-	1	1	3	3
CO5	3	3	2	-	-	-	-	-	-	-	1	1	3	3

ME4555	DESIGN FOR MANUFACTURING	L	T	P	C						
WIE4555	DESIGN FOR MANUFACTURING	3	0	0	3						
OBJECTIVE	S										
To und	derstand the principles of design such the manufacturing of the product is possible.										
Various design aspects to be considered for manufacturing the products using different processes											
UNIT I	DESIGN FOR MANUFACTURING APPROACH AND PROCESS				9						
Taguchi metho group Technol development o	s and tools, design axioms, design for assembly and evaluation, minimum part od, robustness assessment, manufacturing process rules, designer's tool kit, Comlogy, failure mode effective analysis, Value Analysis. Design for minimum num of modular design, minimizing part variations, design of parts to be multi-functionation, Poka Yoke principles.	puter ber o	: Aio f pa	ded rts,	CO						
UNIT II	GEOMETRIC ANALYSIS				9						
·	review of relationship between attainable tolerance grades and difference machininers, screw threads, applying probability to tolerances.	ng pro	ocess	ses.	CO						
UNIT III	FORM DESIGN OF CASTINGS AND WELDMENTS				9						
	stings based on parting line considerations, Minimizing core requirements, redesigning of ts, use of welding symbols.	cast m	nemb	ers	CO						
UNIT IV	MECHANICAL ASSEMBLY				9						
	nbly, deciding the number of groups, control of axial play, examples, grouped datu geometric analysis and applications - design features to facilitate automated assembly		sten	ns -	СО						
UNIT V	TRUE POSITION THEORY				9						
Virtual size co	oncept, floating and fixed fasteners, projected tolerance zone, assembly with gask	et, ze	ero t	rue							

TOTAL: 45 PERIODS

CO₅

TEXTBOOKS

- 1. Corrado Poli, "Design for Manufacturing: A Structured Approach" Elsevier, 2001
- 2. G. K. Lal, Nallagundla Venkata Reddy, and Vijay Gupta," Fundamentals of Design and Manufacturing" alpha Science International, 2005

position tolerance, functional gauges, paper layout gauging, examples. Operation sequence for typical shaft

type of components. Preparation of process drawings for different operations, tolerance worksheets and

REFERENCE BOOKS

centrality analysis, examples.

- 1. A. K. Chitale, R. C. Gupta, "Product Design And Manufacturing" PHI Learning Pvt. Ltd. 2013
- 2. James G. Bralla, "Hand Book of Product Design for Manufacturing" McGraw Hill Publications, 1983.
- 3. Oliver R. Wade, "Tolerance Control in Design and Manufacturing", Industrial Press Inc. New York Publications, 1967.
- 4. Harry Peck, "Designing for Manufacture", Pitman Publications, 1983.
- 5. Matousek, "Engineering Design, A Systematic Approach" Blackie & Son Ltd., London, 1974.

Upon completion of the course, students will be able to

CO1	Perform designing of components considering manufacture ability.
CO2	Understand the need and the usage of tolerances.
соз	Design casting and weld structures.
CO4	Use principles of design for assembly.
CO5	Understand true position theory.

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	1	-	-	-	-	-	-	1	1	3	1
CO2	3	2	3	1	-	-	-	-	-	-	1	1	3	1
CO3	3	2	3	1	-	-	-	-	-	-	1	1	3	1
CO4	3	2	3	1	-	-	-	-	-	-	1	1	3	1
CO5	3	2	3	1	-	-	-	-	-	-	1	1	3	1

1504564	A DVANCED INTERNAL COMPLICTION ENGINES								
ME4561	ADVANCED INTERNAL COMBUSTION ENGINES	3	0	0	3				
COURSE OBJ	ECTIVES:								
To unde	erstand the underlying principles of operation of different IC Engines and comp	onen	ts.						
To prov	ide knowledge on pollutant formation, control, alternate fuel etc.								
UNIT I	SPARK IGNITION ENGINES				9				
	ents – Fuel injection systems – Mono point, Multipoint & Direct injection rmal and Abnormal combustion – Knock - Factors affecting knock – Combust				CO1				
UNIT II	COMPRESSION IGNITION ENGINES				9				
Indirect injection	ction Systems - Stages of combustion - Knocking - Factors affecting knock systems - Combustion chambers - Fuel Spray behavior - Spray structum to motion - Introduction to Turbo-charging.				CO2				
UNIT III	POLLUTANT FORMATION AND CONTROL				9				
and Particulate m	res – Formation of Carbon Monoxide, Un burnt hydrocarbon, Oxides of Nitrognatter – Methods of controlling Emissions – Catalytic converters, Selective Catarticulate Traps – Methods of measurement – Emission norms and Driving cyc	alytic			CO3				
UNIT IV	ALTERNATIVE FUELS				9				
	en, Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesels and Demerits - Engine Modifications	- Pr	operti	es,	CO4				
UNIT V	RECENT TRENDS				9				

TOTAL: 45 PERIODS

CO5

TEXTBOOKS

Onboard Diagnostics.

1. Ganesan, V., "Internal combustion engines", Tata McGraw Hill Publishing Co., 2007

Air assisted Combustion, Homogeneous charge compression ignition engines – Variable Geometry turbochargers – Common Rail Direct Injection Systems - Hybrid Electric Vehicles – NOx Adsorbers -

2. Ramalingam. K.K., "Internal combustion engine", scitech publications, Chennai, 2003

- 1. Ganesan, V., "Compute Simulation of Compression Ignition engine process", Universities Press (India) Ltd., Hyderabad, 1996.
- 2. John,B., Heywood, "Internal Combustion Engine Fundamentals", McGraw Hill Publishing Co., New York, 1990
- 3. Benson, R.S., Whitehouse, N.D., "Internal Combustion Engines", Pergamon Press, Oxford, 1979.

Upon completion of the course, students will be able to:

CO1	Ability to understand the performance & Damp; characteristics a S.I Engine
	Ability to understand about various injection systems, Fuel Spray behavior, Stages of combustion, Turbo charging, Combustion chambers and Knocking in C.I Engine
CO3	Ability to understand various pollutants and its formations, method of controlling Emissions, methods of measurement, Emission norms and Driving cycles
CO4	Ability to understand various alternative fuels, their suitability and corresponding Engine modifications
CO5	Ability to understand about the recent trends in I.C. Engine's Injection Systems, Combustion, ignition, Hybrid Vehicles and Onboard Diagnostics

COs	PROGRAM OUTCOMES (POs)											PROGRAM OUTCOMES (POs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	1	-	1	-	-	-	-	-	1	1	1	
CO2	3	2	2	1	-	1	-	-	-	-	-	1	1	1	
соз	3	1	2	-	-	1	-	-	-	-	-	1	1	1	
CO4	3	2	1	-	-	1	-	-	-	-	-	1	1	1	
CO5	3	2	2	1	-	1	-	-	-	-	-	1	1	1	

3.577.4.5.4	DDOCESS DI ANNING AND COST ESTIMATION		T	P	C		
ME4562	1E4562 PROCESS PLANNING AND COST ESTIMATION			0	3		
OBJECTI	VES						
	introduce the process planning concepts to make cost estimation for various products a	fter p	roce	SS			
planning							
UNIT I INTRODUCTION TO PROCESS PLANNING							
Introduction- methods of process planning-Drawing interpretation-Material evaluation – steps in process							

UNIT I	INTRODUCTION TO PROCESS PLANNING	9						
	- methods of process planning-Drawing interpretation-Material evaluation – steps in process oduction equipment and tooling selection	CO1						
UNIT II	UNIT II PROCESS PLANNING ACTIVITIES							
	meters calculation for various production processes-Selection jigs and fixtures selection of ance methods - Set of documents for process planning-Economics of process planning- case	CO2						
UNIT III	INTRODUCTION TO COST ESTIMATION	9						
	of costing and estimation –methods of costing-elements of cost estimation –Types of estimates – rocedure- Estimation labor cost, material cost- allocation of over head charges- Calculation of cost	CO3						
UNIT IV	PRODUCTION COST ESTIMATION	9						
Estimation of Foundry S	f Different Types of Jobs - Estimation of Forging Shop, Estimation of Welding Shop, estimation Shop	CO4						
UNIT V	MACHINING TIME CALCULATION	9						
for Different	f Machining Time - Importance of Machine Time Calculation- Calculation of Machining Time Lathe Operations, Drilling and Boring - Machining Time Calculation for Milling, Shaping and achining Time Calculation for Grinding	CO5						
	TOTAL: 45 PE	RIODS						

TEXTBOOKS

- 1. PETER SCALON, "Process planning, Design/Manufacture Interface", Elsevier science technology Books, Dec 2002.
- 2. Ostwalal P.F. and Munez J., "Manufacturing Processes and systems", 9th Edition, John Wiley, 1998.

- 1. Chitale A.V. and Gupta R.C., "Product Design and Manufacturing", 2nd Edition, PHI, 2002.
- 2. Russell R.S and Tailor B.W, "Operations Management", 4th Edition, PHI, 2003

COUR	COURSE OUTCOMES								
Upon c	Upon completion of the course, students will be able to								
CO1	elect the process, equipments and tools for various industrial products								
CO2	Prepare the process planning activity chart								
CO3	Explain the concept of cost estimation								
CO4	Compute the job order cost for different types of shop floor								
CO5	Calculate the machining time for various machining operations								

COs				PI	ROGR	AM O	UTCO	MES ((POs)				PROG SPEC OUTC (PS	CIFIC OMES
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	2	2	2	3	3	1	3	3	3	-
CO2	2	2	2	1	2	2	2	3	2	1	3	2	3	-
соз	2	2	2	1	2	2	2	3	2	1	3	2	3	-
CO4	2	2	2	1	2	2	2	3	2	1	3	2	3	-
CO5	2	2	2	1	2	2	2	3	2	1	3	2	3	-

3.577.47.63		L	T	P	C
ME4563	GAS DYNAMICS AND JET PROPULSION	3	0	0	3
COURSE OB	JECTIVES:				
To un	derstand the basic difference between incompressible and compressible flow.				
	derstand the phenomenon of shock waves and its effect on flow. To gain some be jet propulsion and Rocket Propulsion. (Use of Standard Gas Tables permitted)	asic l	know	ledge	e
UNIT I	BASIC CONCEPTS AND ISENTROPIC FLOWS				9
••	mentum equations of compressible fluid flows – Stagnation states, Mach waves a				CO1

UNITI	BASIC CONCEPTS AND ISENTROPIC FLOWS	9
	nentum equations of compressible fluid flows – Stagnation states, Mach waves and Mach cone number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers	CO1
UNIT II	FLOW THROUGH DUCTS	9
Flows through of flow properties	constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of	CO2
UNIT III	NORMAL AND OBLIQUE SHOCKS	9
Governing equa relations – App	tions – Variation of flow parameters across the normal and oblique shocks – Prandtl – Meyer lications.	СОЗ
UNIT IV	JET PROPULSION	9
	opulsion – Thrust equation – Thrust power and propulsive efficiency – Operating principle, and use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines	CO4
UNIT V	SPACE PROPULSION	9
	et engines – Propellants-feeding systems – Ignition and combustion – Theory of rocket Performance study – Staging – Terminal and characteristic velocity – Applications – space	

TOTAL: 45 PERIODS

TEXTBOOKS

- 1. Anderson, J.D., "Modern Compressible flow", 3rd Edition, McGraw Hill, 2012.
- 2. Yahya, S.M. "Fundamentals of Compressible Flow", New Age International (P) Limited, New Delhi, 2002.

- 1. Cohen. H., G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", Longman Group Ltd.,1980\
- 2. Ganesan. V., "Gas Turbines", Tata McGraw Hill Publishing Co., New Delhi, 2010.
- 3. Shapiro. A.H.," Dynamics and Thermodynamics of Compressible fluid Flow", John wiley, New York, 1953.
- 4. Sutton. G.P., "Rocket Propulsion Elements", John wiley, New York, 2010,
- 5. Zucrow. N.J., "Principles of Jet Propulsion and Gas Turbines", John Wiley, New York, 1970.

Upon completion of the course, students will be able to

CO1	Apply the concept of compressible flows in variable area ducts.
CO2	Apply the concept of compressible flows in constant area ducts.
CO3	Examine the effect of compression and expansion waves in compressible flow.
CO4	Use the concept of gas dynamics in Jet Propulsion.
CO5	Apply the concept of gas dynamics in Space Propulsion.

				SPE OUT(GRAM CIFIC COMES SOs)									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	-	-	-	-	-	-	-	1	2	1
CO2	3	2	2	1	-	-	-	-	-	-	-	1	2	1
CO3	3	2	2	1	-	-	-	-	-	-	-	1	2	1
CO4	3	2	2	1	-	-	-	-	-	-	-	1	2	1
CO5	3	2	2	1	-	-	-	-	-	-	-	1	2	1

\mathbf{N}	$\mathbf{F4}$	561

OPERATIONAL RESEARCH

L	Т	P	C
3	0	0	3

TOTAL: 45 PERIODS

COURSE OBJECTIVES:

❖ To provide knowledge and training in using optimization techniques under limited resources for the engineering and business problems.

UNIT I	LINEAR MODELS	15				
	n operation research study – Linear programming – Graphical method– Simplex algorithm – ation – Sensitivity analysis	CO1				
UNIT II TRANSPORTATION MODELS AND NETWORK MODELS						
Minimal spann	Assignment Models – Traveling Salesman problem-Networks models – Shortest route – ing tree – Maximum flow models – Project network – CPM and PERT networks – Critical path equencing models.	CO2				
UNIT III	INVENTORY MODELS	6				
•	els – Economic order quantity models – Quantity discount models – Stochastic inventory i product models – Inventory control models in practice.	CO3				
UNIT IV	QUEUEING MODELS	6				
-	els - Queueing systems and structures — Notation parameter — Single server and multi server on input — Exponential service — Constant rate service — Infinite population — Simulation.	CO4				
UNIT V	DECISION MODELS	10				
Linear Program	els – Game theory – Two person zero sum games – Graphical solution- Algebraic solution- mming solution – Replacement models – Models based on service life – Economic life– Single le search technique – Dynamic Programming – Simple Problem.	CO5				

TEXTBOOKS

- 1. Hillier and Libeberman, "Operations Research", Holden Day, 2005
- 2. Taha H.A., "Operations Research", Sixth Edition, Prentice Hall of India, 2003.

- 1. Azara M.J., Jarvis and Sherali H., "Linear Programming and Network Flows", John Wiley, 2009.
- 2. Budnick F.S., "Principles of Operations Research for Management", Richard D Irwin, 1990.

Upon completion of the course, students will be able to

Opon	P														
CO1	To und	To understand the concepts of linear model theorem.													
CO2	To und	Γο understand the concept and application of transportation model													
CO3	To und	erstand	the con	cept of	Invento	ory con	trol and	its app	lication	s					
CO4	To understand the concept of queuing model and its applications														
CO5	To understand the decision models and decision making														
				MA	PPING	OF C	Os WI	ГН РО	s AND	PSOs					
COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)	
COS		1	Ī		ı	П	ı	T	T	T	Г		(PS	Os)	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	Os) PSO2	
CO1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11 -	PO12			
							PO7 -	PO8			PO11 -		PSO1	PSO2	
CO1	1	1	1	2		2	PO7	PO8	3	3	PO11	3	PSO1	PSO2	
CO1	1	1	1	2	-	2	PO7	PO8	3	3	PO11	3	PSO1 1 1	PSO2 1	

M	E4565	ï

CASTING AND WELDING PROCESSES

L	T	P	C
3	0	0	3

OBJECTIVES

- ❖ To study the metallurgical concepts and applications of casting and welding process.
- ❖ To acquire knowledge in CAD of casting and automation of welding process.

UNIT I	CASTING DESIGN	9
	between metal and mould — Design considerations in casting – Designing for directional and minimum stresses - principles and design of gating and risering	CO1
UNIT II	CASTING PROCESS	9
	n of pure metal and alloys – shrinkage in cast metals – progressive and directional solidification ation of the melt-casting defects – Castability of steel , Cast Iron, Al alloys, Babbit alloy and	CO2
UNIT III	RECENT TRENDS IN CASTING AND FOUNDRY LAYOUT	9
casting, Cour	ng, precision investment casting, CO2 moulding, centrifugal casting, Die casting, Continuous iter gravity low pressure casting, Squeeze casting and semisolid processes. Layout of mechanized d reclamation – material handling in foundry pollution control in foundry — Computer aided design	CO3
UNIT IV	WELDING METALLURGY AND DESIGN	9
Zirconium an tearing – Res	Zone and its characteristics – W eldability of steels, cast iron, stainless steel, aluminum, Mg , Cu , d titanium alloys – Carbon Equivalent of Plain and alloy steels Hydrogen embrittlement – Lamellar idual stress – Distortion and its control . Heat transfer and solidification - Analysis of stresses in tures – pre and post welding heat treatments – weld joint design – welding defects – Testing of	CO4
UNIT V	RECENT TRENDS IN WELDING	9
welding – ult welding- nar – induction,	ling, friction stir welding – explosive welding – diffusion bonding – high frequency induction rasonic welding – electron beam welding – Laser beam welding – Plasma welding – Electroslag row gap, hybrid twin wire active TIG – Tandem MIG- modern brazing and soldering techniques dip resistance, diffusion processes – Hot gas, wave and vapour phase soldering. Overview of welding in aerospace, nuclear, surface transport vehicles and under water welding.	CO5

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Carrry B., Modern Welding Technology, Prentice Hall Pvt Ltd., 2002
- 2. CORNU.J. Advanced welding systems Volumes I, II and III, JAICO Publishers, 1994.

- 1.HEINELOPER & ROSENTHAL, Principles of Metal Casting, Tata McGraw Hill, 2000.
- 2.IOTROWSKI Robotic welding A guide to selection and application Society of mechanical Engineers, 1987.
- 3. Jain P.L., Principles of Foundry Technology, Tata McGraw Hill Publishers, 2003
- 4.LANCASTER.J.F. Metallurgy of welding George Alien & Unwin Publishers, 1980
- 5.Parmer R.S., Welding Engineering and Technology, Khanna Publishers, 2002
- 6.SCHWARIZ, M.M. Source book on innovative welding processes American Society for Metals (OHIO), 1981

	RSE OUTCOMES completion of the course, students will be able to
CO1	To understand the various mould and its components.
CO2	Explain the concepts of metal characterization during casting and its defects.
CO3	Illustrate the application with various Casting process.
CO4	Understanding the concepts of various designs of welding and metallurgy.
CO5	Analyzing the various trends in welding and its unique metalurgy

COs		PROGRAM OUTCOMES (POs)										PROG SPEC OUTC S (PS	IFIC OME	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	1	1	-	-	-	-	-	2	3	2
CO2	2	2	2	2	1	1	1	1	-	1	1	2	3	2
CO3	2	2	2	2	1	1	1	-	-	-	ı	2	3	2
CO4	2	2	2	2	1	1	ı	1	-	1	ı	2	3	2
CO5	2	2	2	2	1	1	ı	-	-	-	ı	2	3	2

00044	
OEC41	4

BASICS OF BIOMEDICAL INSTRUMENTATION

L	Т	P	C
3	0	0	3

TOTAL: 45 PERIODS

COURSE OBJECTIVES:

- ❖ To study about the different bio potential and its propagation
- To understand the different types of electrodes and its placement for various recording
- ❖ To study the design of bio amplifier for various physiological recording
- ❖ To learn different measurement techniques for non-physiological parameters
- To discuss the recent trends in the field of diagnostic and therapeutic equipment

* 10 disc	cuss the recent trends in the field of diagnostic and therapeutic equipment	
UNIT I	BIOPOTENTIAL RECORDING AND ELECTRODE TYPES	9
	igin and its propagation. Types of electrodes and its equivalent circuits - surface, needle and es. Recording problems - measurement with two electrodes	CO1
UNIT II	FEATURES OF BIOSIGNAL AND ELECTRODE CONFIGURATIONS	9
	o-signal – frequency and amplitude ranges. ECG – Einthoven's triangle, standard 12 lead unipolar, bipolar, average mode and 10-20 electrode system. EMG– unipolar and bipolar	CO2
UNIT III	BIOAMPLIFIER CIRCUITS AND ASSIST DEVICES	9
•	ents for bio-amplifier - differential bio-amplifier, PLI, Right leg driven ECG amplifier, Band Assist Devices- Dialyzer, Cardiac Pacemakers, and Heart Lung Machine.	СОЗ
UNIT IV	MEASUREMENT OF NON-ELECTRICAL AND BIO-CHEMICAL PARAMETERS	9
method, direct measurement: 1	espiration rate and pulse rate measurements. Blood Pressure: indirect methods - Auscultatory methods: electronic manometer, Systolic, diastolic pressure, Blood flow and cardiac output Indicator dilution, and dye dilution method. Calorimeter, Sodium Potassium Analyzer, auto lified schematic description).	CO4
UNIT V	CURRENT TRENDS IN MEDICAL DEVICES	9
	licine and its applications, Thermograph – System, working, endoscopy unit, Cryogenic roduction to tele-medicine.	CO5

TEXTBOOKS

- 1. Leslie Cromwell, "Biomedical Instrumentation and measurement", Prentice hall of India, New Delhi, 2007.
- 2. John G. Webster, "Medical Instrumentation: Application and Design", John Wiley and sons, NewYork, 2004. (Unit I,II&III).

- 1. MyerKutz, "Standard Handbook of Biomedical Engineering and Design", McGraw Hill Publisher, 2003.
- 2. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, NewDelhi, 2003.(Unit II&IV)
- 3. Joseph J. Carr and John M Brown, "Introduction to Biomedical Equipment Technology", Pearson Education, 2004.
- 4. Chan and Anthony Y.K, "Biomedical Device Technology: Principles and Design", Springfield, Illinois: Charles C. Thomas publisher Limited, 2016.

Upon completion of the course, students will be able to

Upon	comple	tion of	the cou	irse, sti	idents v	will be	able to							
CO1	To lear	To learn the different bio potentials and its propagation												
CO2	To get	To get familiarized with different electrode placements for various physiological recording												
CO3	Γο desi	o design bio amplifiers for various physiological recording												
CO4	To und	erstand	various	techni	ques for	r non-el	lectrical	and ph	ysiolog	gical me	asurem	ents		
CO5	To und	Γο understand the current trends in medical devices.												
	MAPPING OF COs WITH POs AND PSOs													
COs	PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	-	1	3	-	-	1	-	-	-	-	1
CO2	2	2	2	-	1	3	-	-	1	-	-	-	-	1
CO3	3	3	3	-	3	3	-	-	2	-	-	-	-	1
CO4	2	2	3	-	3	3	-	-	2	-	-	-	-	1
		1												

		L	T	P	С
OEC412	FOUNDATION OF ROBOTICS	3 0		0	3
To compTo examTo disser	BJECTIVES: rehend how a robot's fundamental parts work. ine how different Ends of Effector and sensors are used. minate information on programming and robot kinematics. about the economics, safety, and future of robots				
UNIT I	FUNDAMENTALS OF ROBOT				9
Specifications	ition - Robot Anatomy - Coordinate Systems, Work Envelope Types, and Cla - Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load - Robot Parts and thoots - Different Applications.				CO1
UNIT II	SYSTEMS FOR ROBOT DRIVE AND ENDEFFECTORS				9
Motors, A.C. Types of Med	ives - Hydraulic Drives - Mechanical Drives - Electrical Drives - D.C. Servo Moservo Motors-Salient Features, Applications and Comparison - End effectors - Chanical actuation, Gripper design, Robot drive system Types, Position, and velocot joints and links - Types, Motion interpolation.	Classif	icatio	n,	CO2
UNIT III	SENSORS AND MACHINE VISION				9
Sensors in rob	oots: Touch Sensors, Tactile Sensors, Proximity, and range sensors, Force sensor, I	ight			

sensors, Pressure sensors - Triangulation Principles Structured - Lighting Approach, Time of Flight, Camera,

Techniques, Image Processing, and Analysis - Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications Inspection, Identification, Visual Serving and Navigation.

Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation - Scaling, Rotation, Translation Homogeneous transformation. Control of robot manipulators – Point-to-point,

RGV, AGV, Industrial applications of robots, Medical, Household, Entertainment, Space, Underwater, Defense, and Disaster management. Applications, Micro and Nanorobots, Future Applications. - Robotics

ROBOT APPLICATIONS AND ECONOMIC IMPLEMENTATION

adoption in Industries - Safety Considerations for Robot Operations - Economic Analysis of Robots.

Frame Grabber, Sensing and Digitizing Image Data - Signal Conversion, Image Storage, Lighting

UNIT IV KINEMATICS AND PROGRAMMING FOR ROBOTS

Continuous Path Control, Robot programming - Introduction to Artificial Intelligence.

TOTAL: 45 PERIODS

CO₃

9

CO4

9

CO₅

TEXTBOOKS

UNIT V

- 1. Klafter R.D., Chmielewski T.A, and Negin M., "Robotic Engineering An Integrated Approach", Prentice Hall, 2003.
- 2. Bruno Siciliano, Oussama Khatib, "Springer Handbook of Robotics", Springer, 2008.

- 1. Deb.S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Publishing Company Limited, 2010.
- 2. Mikell P. Groover, Mitchell Weiss, Roger N Nagel, Nicholas G Odrey, "Industrial Robotics Technology, Programming and Applications", Tata McGraw Hill Pub. Co., 2008.
- 3. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 4. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.

Upon completion of the course, students will be able to

Opon	compie	uon oi	tne cou	irse, su	iuents	will be	able to							
CO1	List an	ist and describe the fundamental components of industrial robots.												
CO2	Examir	ne the k	inemati	cs and o	control	strategi	es of th	e robot.						
CO3	To imp	rove pe	rforma	nce, cla	ssify the	e nume	rous rol	oot sens	sors.					
CO4	Able to	apply l	basic en	ngineeri	ng knov	wledge	for the	design (of robo	tics				
CO5	To list	To list the different commercial and noncommercial uses of robots.												
	1			MA	PPING	OF C	Os WI	ГН РО	s AND	PSOs				
COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	2	2	-	-	-	-	2	1	1	-
CO2	3	3	3	3	2	3	-	-	-	-	2	1	1	-
CO3	3	2	3	3	2	2	-	-	-	-	2	1	1	-
CO4	3	3	3	2	2	2	-	-	-	-	2	2	1	-
CO5	3	2	3	3	2	3	-	-	-	-	2	1	1	-

OIT411

FUNDAMENTALS OF DATABASE DESIGN

L	Т	P	C
3	0	0	3

COURSE OBJECTIVES:

- * To learn the role of database management system in an organization and learn the database concepts.
- * To understand the design databases using data modelling and data normalization techniques.
- ❖ To construct database queries using relational algebra and calculus.
- To understand the concept of a database transaction and related database facilities.

To learn the basic concepts of Transactions, concurrency control techniques, and recovery procedures

▼ 10 learn t	ne basic concepts of Transactions, concurrency control techniques, and recovery procedures	
UNIT I	CONCEPTUAL MODELLING	9
	tabase design -Database Environment, - Data Models: Entity Relationship Model, Relational se Development Lifecycle	CO1
UNIT II	RELATIONAL MODELS	9
Integrity Cons Network	traints- SQL Data Manipulation and Definition- Views- Relational Models- Hierarchical and	CO2
UNIT III	INTRODUCTION TO SQL	9
	o Structured Query Language-DDL Commands-DML Commands-TCL Commands -views-ns- Sub queries- SQL Functions-Joins-PL/SQL-simple programs	СОЗ
UNIT IV	RELATIONAL DATABASE DESIGN AND NORMALIZATION	9
	relationship Model-ER DiagramsFunctional Dependencies-First, Second and Third Normal ency preservation	CO4
UNIT V	TRANSACTION MANAGEMENT	9
Transaction C techniques	Concepts- Properties- Schedules- Serializability- Concurrency Control – Two phase locking	CO5
	TOTAL: 45 PER	RIODS

TEXTBOOKS

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw-Hill, 4thEdition, 2002.

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, 3rdEdition, 2003.
- 2. Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 3rd Edition, 2003.
- 3. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", Pearson Education, United States, 1st Edition, 2000.
- 4. Peter Rob, Corlos Coronel, "Database System, Design, Implementation and Management", Thompson Learning Course Technology, 5th Edition, 2003.

Upon completion of the course, students will be able to

CO1	The fundamentals of Database systems are vital components of modern information systems.
CO2	Understand the need for Databases and relational Model concepts.
соз	Database applications all pervasive and range in size from small in-memory databases to terabytes or even larger in various applications domains.
CO4	The course focuses and the fundamentals of knowledgebase and relational database management systems, and the current developments in database theory and their practices.
CO5	Write Queries in SQL and execute multiple sub-queries, functions and joins.

COs	PROGRAM OUTCOMES (POs)												PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	1	3	2	2	2	1	2	2	2	-	-
CO2	1	2	2	1	3	2	2	2	1	2	2	2	-	-
CO3	1	2	2	1	3	2	2	2	1	2	2	2	-	-
CO4	1	2	2	1	3	2	2	2	1	2	2	2	-	-
CO5	1	2	2	1	3	2	2	2	1	2	2	2	-	-

OMA426	
\ / V /\ -\ 2\ U	I

RESOURCE MANAGEMENT TECHNIQUES

L	T	P	C
3	0	0	3

OBJECTIVES

- **&** Be familiar with resource management techniques.
- ❖ Learn to solve problems in linear programming and Integer programming.
- ❖ To understand the concept of non-linear programming.
- Be exposed to CPM and PERT.

UNIT I	LINEAR PROGRAMMING	9							
Principal compo	Principal components of decision problem – Modeling phases – LP Formulation and graphic solution								
- Resource allo	- Resource allocation problems - Simplex method - Sensitivity analysis.								
UNIT II	UNIT II DUALITY AND NETWORKS								
Definition of du	nal problem – Primal – Dual relationships – Dual simplex methods – Post optimality								
analysis – Trans	sportation and Assignment model - Shortest route problem.	CO2							
UNIT III	INTEGER PROGRAMMING	9							
Cutting plan alg	orithm – Branch and Bound methods, Multistage (Dynamic) Programming.	CO3							
UNIT IV	CLASSICAL OPTIMISATION THEORY	9							
Unconstrained	external problems, Newton - Raphson method - Equality constraints - Jacobian	CO4							
methods - Lagra	methods – Lagrangian method – Kuhn – Tucker conditions – Simple problems.								
UNIT V	OBJECT SCHEDULING	9							
Network diagram	m representation – Critical path method – Time charts and resource leveling – PERT	CO5							
	TOTAL: 45 PER	IODS							

TEXT BOOKS:

- 1. H.A. Taha "Operation Research", Prentice Hall of India, 2002.
- 2. Paneer Selvam "Operations Research", Prentice Hall of India, 2002

REFERENCE BOOKS:

- 1. Anderson "Quantitative Methods for Business", 8th Edition, Thomson Learning, 2002.
- 2. Winston "Operation Research", Thomson Learning, 2003.
- 3. Vohra "Quantitative Techniques in Management", Tata Mc Graw Hill, 2002.
- 4. Anand Sarma "Operation Research", Himalaya Publishing House, 2003

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Solve optimization problems using simplex method.
CO2	Solve optimization problems using Duality concept, solve Transportation and assignment models.
CO3	Apply integer programming and linear programming to solve real-life applications.
CO4	Solving Unconstrained external problems.
CO5	Use PERT and CPM for problems in project management.

0.0	PROGRAM OUTCOMES (POs)									PROGRAM SPECIFIC OUTCOMES (PSOs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	1	-	-	-	1	1	1	-	3	2
CO2	2	2	2	1	1	-	-	-	1	1	-	1	2	2
CO3	2	3	2	1	1	-	-	-	2	2	-	-	1	-
CO4	2	2	2	2	1	-	-	-	1	1	1	1	2	3
CO5	2	1	2	1	1	-	-	-	2	1	1	-	3	3

\mathbf{O}	\mathbb{E}	\mathbb{F}_{2}	41	1

RENEWABLE ENERGY SYSTEMS

L	T	P	C
3	0	0	3

COURSE OBJECTIVES:

- ❖ To create awareness about renewable and non-renewable Energy Sources, technologies and its impact on the environment
- ❖ To learn wind energy conversion system and its issues with grid integration.
- To learn the concepts of solar PV and solar thermal systems.
- ❖ To understand the concept of tidal energy, hydrogen energy, ocean thermal energy and its significance.

UNIT – I	RENEWABLE ENERGY SOURCES	9					
fossil fuel u Significance	se, Non-Conventional energy sources- Renewable energy(RE) and its types, es of renewable energy sources, Sustainable Design and development, Effects and	CO1					
UNIT – II	WIND ENERGY	9					
		CO2					
UNIT - III	SOLAR - THERMAL SYSTEMS AND PV SYSTEMS	9					
systems (SF Photovoltai	PV): Basic Principle of SPV conversion – Types of PV Systems- Types of Solar Cells, c cell concepts: Cell, module, array, I-V Characteristics, Efficiency & Quality of the	CO3					
UNIT - IV	Conventional energy sources- Fossil Fuels, Types of fossil fuel, Environmental consequences of fossil fuel use, Non-Conventional energy sources- Renewable energy(RE) and its types, Significances of renewable energy sources, Sustainable Design and development, Effects and Limitations of RE sources. UNIT - II WIND ENERGY Wind formation, Power in the Wind – WPP (wind power plant)- Components of WPPs - Types of Wind Power Plants (WPPs)— Working of WPPs- Siting of WPPs-Grid integration issues of WPPs. UNIT - III SOLAR - THERMAL SYSTEMS AND PV SYSTEMS Solar Radiation, Radiation Measurement, Solar Thermal system and its types, Solar Photovoltaic systems (SPV): Basic Principle of SPV conversion – Types of PV Systems- Types of Solar Cells, Photovoltaic cell concepts: Cell, module, array, I-V Characteristics, Efficiency & Quality of the Cell, series and parallel connections - Applications. UNIT - IV BIOMASS, GEOTHERMAL AND HYDRO ENERGY SOURCES Introduction-Bio mass resources —Energy from Bio mass: conversion processes-Biomass Cogeneration-Environmental Benefits. Geothermal Energy: Basics, Direct Use, Geothermal Electricity. Mini/micro hydro power: Classification of hydropower schemes, Essential components of hydroelectric system.						
Cogeneration Electricity.	Introduction-Bio mass resources –Energy from Bio mass: conversion processes-Biomass Cogeneration-Environmental Benefits. Geothermal Energy: Basics, Direct Use, Geothermal Electricity. Mini/micro hydro power: Classification of hydropower schemes, Essential components						
UNIT - V	OTHER ENERGY SOURCES	9					
Energy from	n waves, wave power devices. Hydrogen Production and Storage- Fuel cell: Principle various types - construction and applications.	CO5					
	TOTAL: 45 PERIO						

TEXTBOOKS

- 1. Joshua Earnest, Tore Wizeliu, 'Wind Power Plants and Project Development', PHI Learning Pvt.Ltd, New Delhi, 2015.
- 2. D.P.Kothari, K.C Singal, Rakesh Ranjan "Renewable Energy Sources and Emerging Technologies", PHI Learning Pvt.Ltd, New Delhi, 2013.

- 1. A.K.Mukerjee and Nivedita Thakur," Photovoltaic Systems: Analysis and Design", PHI Learning Private Limited, New Delhi, 2011
- 2. Richard A. Dunlap," Sustainable Energy" Cengage Learning India Private Limited, Delhi, 2015.
- 3. Chetan Singh Solanki, "Solar Photovoltaics: Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2011
- 4. Bradley A. Striebig, Adebayo A. Ogundipe and Maria Papadakis," Engineering Applications in Sustainable Design and Development", Cengage Learning India Private Limited, Delhi, 2016.

Upon completion of the course, students will be able to

CO1	Ability to create awareness about non- renewable and renewable Energy Sources and technologies
CO2	Acquire knowledge on the concepts of wind energy conversion system, siting and grid related issues.
CO3	Ability to understand the solar PV and solar thermal systems
CO4	Ability to analyze other types of renewable energy resources like biomass, geothermal and Hydro energy.
CO5	Ability to Acquire knowledge on tidal energy, hydrogen energy, ocean thermal energy and fuel cell.

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	1	1	1	3	3	3	1	1	1	3	1	1	
CO2	3	3	3	3	3	3	3	3	3	1	3	3	1	1	
CO3	3	3	3	3	3	3	3	3	3	1	3	3	1	1	
CO4	3	3	3	3	3	3	2	3	3	1	2	3	1	1	
CO5	3	3	3	3	3	3	2	3	3	1	2	3	1	1	

OMA	111
UNIA	411

GRAPH THEORY AND ITS APPLICATIONS

L	T	P	C
3	0	0	3

OBJECTIVES

- To introduce the basic notions of graphs and trees which will then be used to solve related problems.
- ❖ To introduce and apply the concepts of trees, connectivity and planarity.
- ❖ To understand the basic concepts of colouring in graph theory.
- ❖ To understand the basic concepts of permutations and combinations.
- ❖ To acquaint the knowledge of recurrence relations and generating function.

UNIT I	INTRODUCTION OF GRAPHS	9				
Components – I	oduction – Isomorphism – Sub graphs – Walks, Paths, Circuits –Connectedness – Euler graphs – Hamiltonian paths and circuits – Trees – Properties of trees – Distance and Rooted and binary trees.	CO1				
UNIT II	TREES, CONNECTIVITY AND PLANARITY	9				
set – All cut sets	Fundamental circuits – Spanning trees in a weighted graph – cut sets – Properties of cut – Fundamental circuits and cut sets – Connectivity and separability – Network flows – 1-2-Isomorphism – Combinational and geometric graphs – Planer graphs – Different a planer graph.	CO2				
UNIT III MATRICES, COLOURING AND DIRECTED GRAPH						
	er – Chromatic partitioning – Chromatic polynomial – Matching – Covering – Four color ded graphs – Types of directed graphs – Digraphs and binary relations – Directed paths and Euler graphs.	CO3				
UNIT IV	PERMUTATIONS AND COMBINATIONS	9				
with repetition	nciples of counting - Permutations and combinations - Binomial theorem - combinations - Combinatorial numbers - Principle of inclusion and exclusion - Derangements - ith forbidden positions.	CO4				
UNIT V	GENERATING FUNCTIONS	9				
Generating func	tions - Partitions of integers - Exponential generating function - Summation operator -					

Page 205 of 230

TEXT BOOKS

- 1. Narsingh Deo, "Graph Theory: With Application to Engineering and Computer Science", Prentice Hall of India, 2003
- 2. Grimaldi R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", Addison Wesley, 1994.

- 1. Clark J. and Holton D.A, "A First Look at Graph Theory", Allied Publishers, 1995.
- 2. Mott J.L., Kandel A. and Baker T.P. "Discrete Mathematics for Computer Scientists and Mathematicians", Prentice Hall of India, 1996.
- 3. Liu C.L., "Elements of Discrete Mathematics", Mc Graw Hill, 1985.
- 4. Rosen K.H., "Discrete Mathematics and Its Applications", Mc Graw Hill, 2007.

	COURSE OUTCOMES							
Upon co	ompletion of the course, students should be able to							
CO1	Write precise and accurate mathematical definitions of objects in graph theory.							
CO2	Use mathematical definitions to identify and construct examples and to distinguish examples from non - examples.							
CO3	Validate and critically assess a mathematical proof.							
CO4	Use a combination of theoretical knowledge and independent mathematical thinking in creative investigation of questions in graph theory.							
CO5	Reason from definitions to construct mathematical proofs.							

				MA	.PPIN(G OF C	Os WI	TH PO	s AND	PSOs				
COs				SPEC OUTC	GRAM CIFIC COMES SOs)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	1	2	1	1	1	-	2	-
CO2	3	3	2	1	1	1	-	2	1	1	-	1	2	-
CO3	2	3	2	1	2	1	-	1	2	2	-	-	2	-
CO4	3	2	2	2	1	1	-	2	1	1	1	1	2	-
CO5	3	3	2	1	1	1	1	1	2	1	1	-	2	-

OAD422	OAD432 DEEP LEARNING					
UAD432	DEEP LEARNING	3	0	0	3	
COURSE O	BJECTIVES:			,	-	
To under	stand the basic ideas and principles of neural networks.					
To under	stand the basic concepts of deep learning.					
To appre	ciate the use of deep learning applications.					
UNIT I BASICS OF NEURAL NETWORKS						
Basic Concept of Neurons – Perceptron Algorithm – Feed Forward and Backpropagation Networks.						
UNIT II	INTRODUCTION TO DEEP LEARNING				9	
Deep Feed-Forward Neural Networks – Gradient Descent – Back-Propagation and Other Differentiation Algorithms – Vanishing Gradient Problem – Mitigation – Rectified Linear Unit (ReLU) – Heuristics for Avoiding B ad Local Minima – Heuristics for Faster Training – Nestors Accelerated Gradient Descent – Regularization for Deep Learning – Dropout – Adversial Training – Optimization for Training Deep Models.						
UNIT III	CONVOLUTIONAL NEURAL NETWORKS				9	
Learning - R	ctures – Convolution – Pooling Layers – Transfer Learning – Image Classification u ecurrent and Recursive Nets – Recurrent Neural Networks – Deep Recurrent ural Networks – Applications.				CO3	
UNIT IV	UNSUPERVISED DEEP LEARNING				9	
Autoencoders – Standard – Sparse – Denoising – Contractive – Variational Autoencoders-Adversarial Generative Networks - Deep Boltzmann Machine (DBM).						
UNIT V	APPLICATIONS OF DEEP LEARNING				9	
Images segmentation – Object Detection – Multi class Object Detection - Object Classification and Localization- Automatic Image Captioning – Image generation with Generative adversarial networks—Opinion Mining using Recurrent Neural Networks – Parsing and Sentiment Analysis using Recursive Neural Networks – Sentence Classification using Convolutional Neural Networks – Dialogue Generation with LSTMs.						
	TO	TAL	: 45 P	ERI	IODS	

L

 \mathbf{C}

TEXTBOOKS

- 1. Ian J. Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017.
- 2. Francois Chollet, "Deep Learning with Python", Manning Publications, 2018

- 1. Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", Apress, 2017.
- 2. Ragav Venkatesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing", CRC Press, 2018.
- 3. Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018.
- 4. Joshua F. Wiley, "R Deep Learning Essentials", Packt Publications, 2016.
- 5. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.

Upon completion of the course, students will be able to

CO1	Understand the role of deep learning in machine learning applications.						
CO2	Design and implement deep learning applications.						
СОЗ	Critically analyze different deep learning models in image related projects.						
CO4	Design and implement convolutional neural networks.						
CO5	Know about applications of deep learning in NLP and image processing.						
	MAPPING OF COs WITH POs AND PSOs						

COs		PROGRAM OUTCOMES (POs)											PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	1	3	2	2	2	1	3	2	1	1	-
CO2	2	1	2	1	3	2	2	2	1	3	2	1	1	-
CO3	2	1	2	1	3	2	2	2	1	3	2	1	1	-
CO4	2	1	2	1	3	2	2	2	1	3	2	1	1	-
CO5	2	1	2	1	3	2	2	2	1	3	2	1	1	-

OEC411 IoT CONCEPTS AND APPLICATIONS	LAT CONCERTS AND ARRIVATIONS	L	T	P	C
OEC411	101 CONCEPTS AND APPLICATIONS	3	0	0	3

COURSE OBJECTIVES:

- To apprise students with basic knowledge of IoT that paves a platform to understand physical and logical design of IOT.
- To teach a student how to analyze requirements of various communication models and protocols for cost-effective design of IoT applications on different IoT platforms.
- To introduce the technologies for implementing Internet of Things (IoT).

UNIT I	INTRODUCTION TO INTERNET OF THINGS	9
	IoT - Characteristics of IoT - Evolution of IoT - Study of IoT Enabling Technologies - f IoT based Systems - Fog, Applications of Cloud and Edge in IoT	CO1
UNIT II	IoT COMPONENTS	9
	cks of an IoT ecosystem – Sensors, Actuators, Smart Objects and Connecting Smart Objects - deployment templates. Study of Communication Modules – Wifi, Bluetooth, GSM. Zigbee.	CO2
UNIT III	IoT PROTOCOLS	9
Security of IE	cechnologies: Physical Layer of IoT and MAC layer concepts of IoT, Architecture, topology and EEE 802.15.4 Network Layer: IP versions, Optimizing IP for IoT: IPv6, 6LoWPAN, MQTT. concepts of cloud computing.	CO3
UNIT IV	TOOLS FOR IoT IMPLEMENTATION	9
lab - Introduct	Python, Basic programming concepts of Python, Python development tools like Jupyter, Coion to different IoT tools, Applications development through IoT tools, Sensor based application dded system platform-devlopment, Implementation of IoT techniques using Python.	CO4
UNIT V	IoT BASED APPLICATIONS	9
	ications of IoT based in Home automations – Design of IoT in Smart cities – Implementing in – Case study of IoT based system in Logistics – Agriculture – Industry - Health and life style.	CO5

TEXTBOOKS

1. Robert Barton, Patrick Grossetete, David Hanes, Jerome Henry, Gonzalo Salgueiro, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017.Bruno Siciliano, Oussama Khatib, "Springer Handbook of Robotics", Springer, 2008.

TOTAL: 45 PERIODS

2. Samuel Greengard, The Internet of Things, The MIT Press, 2015

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012
- 2. IOT (Internet of Things) Programming: A Simple and Fast Way of Learning, IOT Kindle Edition.
- 3. Dieter Uckelmann, Mark Harrison, Florian Michahelles, "Architecting the Internet of Things" Springer-Verlag Berlin Heidelberg, 2011.
- 4. Arshdeep Bahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015.

Upon completion of the course, students will be able to

_														
CO1	Explair	explain the concept of IoT.												
CO2	Analyz	analyze the networking and sensors communications with IoT Components												
CO3	Unders	Understand the communication models and various protocols for IoT.												
CO4	Analyz	Analyze and design different models for IoT implementation.												
CO5	Analyz	Analyze applications of IoT in real time scenario.												
	- II			MA	PPING	OF CO	Os WIT	H POs	AND I	PSOs				
COs		PROGRAM OUTCOMES (POs)										PROGE SPECT OUTCO (PSO	IFIC DMES	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	2	1	-	-	-	-	-	2	3	-	-
CO2	2	2	2	2	1	-	-	-	-	ı	2	3	-	-
CO3	2	2	2	3	1	-	-	-	-	ı	2	3	-	-
CO4	2	1	3	3	1	-	-	-	-	-	2	3	-	-
CO5	3	1	3	3	2	-	-	-	-	-	2	3	-	-

\mathbf{O}	٨	n	4	22

DATA SCIENCE FUNDAMENTALS

L	T	P	C
3	0	0	3

COURSE OBJECTIVES:

- ❖ To learn the role of data science in big data
- ❖ To understand the tables and graphs describing data with averages.
- ❖ To form the relationship for organizing correlation cooeficient for quantitative data.
- ❖ To understand the concept dependency preservation and ER diagrams
- ❖ To learn the basic concepts of visualization with MAT PLOT LIB

UNIT I	DATA SCIENCE IN BIG DATA	9
	e: Benefits and uses – facets of data - Data Science Process: Overview – Defining research goals data – Data preparation - Exploratory Data analysis – build the model– presenting findings and dications.	CO1
UNIT II	DESCRIBING DATA	9
	Data - Types of Variables -Describing Data with Tables and Graphs -Describing Data with Describing Variability - Normal Distributions and Standard (z) Scores	CO2
UNIT III	RELATIONSHIPS FOR ORGANIZING	9
	-Scatter plots -correlation coefficient for quantitative data -computational formula for coefficient - Regression -regression line -least squares regression line - Standard error of	CO3
UNIT IV	PYTHON MAGIC COMMANDS	9
	R to relationship Model-ER DiagramsFunctional Dependencies-First, Second and Third ms-Dependency preservation	CO4
UNIT V	VISUALIZATION WITH MAT PLOT LIB	9
	Matplotlib – Line plots – Scatter plots – visualizing errors – density and contour plots – s – legends – colors – subplots – text and annotation – three dimensional plotting - Visualization orn.	CO5
	TOTAL: 45 PER	IODS

TEXTBOOKS

- 1. David Cielen, Arno D.B.Meysman, andMohamedAli, "IntroducingDataScience" Manning Publications, 2016. (Unit I)
- 2. Robert S. Witteand John S. Witte, "Statistics", Eleventh Edition, Wiley Publications, 2017. (Units II and III)

REFERENCE BOOKS

1. Jake Vander Plas, "Python DataScience Handbook", O'Reilly, 2016. (Units IV and V)

Upon completion of the course, students will be able to

CO1	Define the data science process
CO2	Understand different types of data description for data science process
CO3	Apply data processing methods for processing health care data.
CO4	Use the Python Libraries for Data Wrangling
CO5	Apply visualization Libraries in Python to interpret and explore data

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1	3	2	2	1	2	2	2	1	1	1	2	-	-	
CO2	1	3	2	2	1	2	2	2	1	1	1	2	-	-	
CO3	1	3	2	2	1	2	2	2	1	1	1	2	-	-	
CO4	1	3	2	2	1	2	2	2	1	1	1	2	-	-	
CO5	1	3	2	2	1	2	2	2	1	1	1	2	-	-	

OEE423	CONTROL SYSTEMS	L	T	P	C
OEE423	CONTROL STSTEMS	3	0	0	3

OBJECTIVES

- To understand the use of transfer function models for analysis physical systems and introduce the control system components.
- To provide adequate knowledge in the time response of systems and steady state error analysis.
- To accord basic knowledge in obtaining the open loop and closed—loop frequency responses of systems.
- To introduce stability analysis and design of compensators
- ❖ To introduce state variable representation of physical systems

UNIT – I	SYSTEMS AND REPRESENTATION	9
	in control systems: – Open and closed loop systems – Electrical analogy of mechanical and as – Transfer function – AC and DC servomotors – Block diagram reduction techniques – uphs.	CO1
UNIT – II	TIME RESPONSE	9
	- Time domain specifications – Types of test input – I and II order system response – Error Generalized error series – Steady state error – Effects of P, PI, PID modes of feedback control e analysis.	CO2
UNIT – III	FREQUENCY RESPONSE	9
	bonse: – Bode plot – Polar plot – Determination of closed loop response from open loop relation between frequency domain and time domain specifications	CO3
UNIT – IV	STABILITY AND COMPENSATOR DESIGN	9
	equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Effect d lag-lead compensation on frequency response.	CO4
UNIT – V	STATE VARIABLE ANALYSIS	9
•	e variables – State models for linear and time invariant Systems – Solution of state and output atrollable canonical form – Concepts of controllability and observability.	CO5
	TOTAL PERIODS:	45

TEXT BOOKS:

- 1. Nagarath, I.J. and Gopal, M., "Control Systems Engineering", New Age International Publishers, 2017.
- 2. Katsuhiko Ogata, "Modern Control Engineering", Pearson, 2015.

- 1. Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2014.
- 2. Richard C.Dorf and Bishop, R.H., "Modern Control Systems", PearsonEducation, 2009.
- 3. John J.D., Azzo Constantine, H. and Houpis Sttuart, N Sheldon, "Linear Control System Analysis and Design with MATLAB", CRC Taylor& Francis Reprint2009.
- 4. Rames C.Panda and T. Thyagarajan, "An Introduction to Process Modelling Identification and Control of Engineers", Narosa Publishing House, 2017.
- 5. M.Gopal, "Control System: Principle and design", McGraw Hill Education, 2012.
- 6. NPTEL Video Lecture Notes on "Control Engineering "by Prof. S. D. Agashe, IIT Bombay.

	Course Outcomes (CO) Upon completion of the course, students will be able to:									
CO1	Ability to develop various representations of system and to reduce the complex systems into simpler system in transfer function.									
CO2	Ability to do time domain analysis of various models of linear system and understand the use of controllers in closed loop system									
CO3	Ability to do frequency domain analysis of various models of linear system									
CO4	Infer the stability of systems and ability to design appropriate compensator for the given specifications									
CO5	Ability to represent the system in state variable forms.									

COs				PR	OGRA	AM OU	TCOM	IES (PC	Os)				PROGRAM SPECIFIC OUTCOMES (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	3	3	3	3	2	2	1	2	2	3	2	-	-		
CO2	3	3	3	3	3	2	2	1	2	2	3	2	-	-		
CO3	3	3	3	3	3	2	2	1	2	2	3	2	-	-		
CO4	3	3	3	3	3	2	2	1	2	2	3	2	-			
CO5	3	3	3	3	3	2	2	1	2	2	3	2	-	-		

OEE421	ELECTRIC AND HYBRID VEHICLE	L	T	P	C
OEE421	ELECTRIC AND HIBRID VEHICLE	3	0	0	3

OBJECTIVES

- ❖ To provide knowledge of the operation and dynamics of electrical vehicles
- To impart knowledge on vehicle control for standard drive cycles of electrical vehicles (EVs)
- ❖ To estimate the energy requirement of EVs and Hybrid Electric Vehicles (HEVs)
- To provide knowledge about different energy sources and energy management in HEVs.
- ❖ To provide knowledge of supervisory control of EVs

UNIT - I	INTRODUCTION TO CONVENTIONAL AND ELECTRIC VEHICLES	9
characteristic	Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission s. Electric Vehicle: EV system- Series parallel architecture of Hybrid Electric Vehicles (HEV) orid Electric Vehicles (PHEV)- Power train components and sizing, Gears, Clutches, and Brakes.	CO1
UNIT - II	MECHANICS OF ELECTRIC VEHICLES	9
	s of vehicle mechanics - tractive force, power and energy requirements for standard drive s - motor torque and power rating and battery capacity.	CO2
UNIT - III	CONTROL OF DC AND AC MOTOR DRIVES	9
quadrant oper	I for constant torque, constant HP operation of all electric motors - DC/DC chopper based four ration of DC motor drives, inverter based V/f Operation (motoring and braking) of induction Construction and operation of PMSM, Brushless DC motor drives, Switched reluctance motor is	CO3
UNIT - IV	ENERGY STORAGE AND MANAGEMENT SYSTEMS	9
•	ciple of operation, types, models, Estimation of SOC & SOH, Traction Batteries and their tandard drive cycles. Alternate sources: Fuel cells, Ultra capacitors, Fly wheels.	CO4
UNIT - V	HYBRID VEHICLE CONTROL STRATEGY	9
	sory control - Selection of modes - power spilt mode - parallel mode - engine brake mode - mode - series parallel mode.	CO5
	TOTAL PERIODS:	45

TEXT BOOKS:

- 1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 2. Iqbal Husain, "Electric and Hybrid vehicles: Design fundamentals", CRC PRESS, Boca Raton London, New York Washington, D.C,2005.

- 1. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
- 3. Larminie, James and John Lowry, "Electric Vehicle Technology Explained" John Wiley and Sons, 2012.
- 4. Tariq Muneer and Irene Illescas García, "The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017.

	COURSE OUTCOMES (CO) Upon completion of the course, students will be able to								
CO1	Learned the significance of Electric Vehicle compared to conventional vehicles.								
CO2	Understood the concept of mechanics of Electric Vehicles.								
CO3	Acquired the knowledge in control of DC And AC motor drives.								
CO4	Concepts related to battery technology and energy storage systems are analysed.								
CO5	Acquired knowledge in control strategy for Hybrid Vehicle & Battery management systems for EV								

COs		PROGRAM OUTCOMES (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3	1	3	2	2	3	3	2	1	3	2	1	
CO2	3	2	3	3	3	2	2	3	3	2	1	2	2	1	
CO3	3	3	3	3	2	2	2	3	2	2	2	3	2	1	
CO4	3	2	3	3	3	3	3	3	3	3	2	3	2	1	
CO5	3	2	2	2	3	3	3	3	3	3	2	3	2	1	

O) (E) (A)		L	T	P	C
OME423	ADDITIVE MANUFACTURING	3	0	0	3

OBJECTIVES

- Understand the need for rapid prototyping.
- ❖ Demonstrate the design tools for additive manufacturing
- ❖ Discuss the principle and operation of Photo polymerization and Powder Bed Fusion.
- * Explain the working of extrusion and sheet lamination processes.
- ❖ Summarize the influence of concentrated beam on additive manufacturing

UNIT I	INTRODUCTION	9
	Need - Development of Additive Manufacturing Technology -Principle – AM Process Chain- n – Rapid Prototyping- Rapid Tooling – Rapid Manufacturing – Applications - Benefits – Case	CO1
UNIT II	DESIGN FOR ADDITIVE MANUFACTURING	9
 Model slic 	Data processing - CAD model preparation – Part orientation and support structure generation ing – Tool path generation- Design for Additive Manufacturing: Concepts and objectives - apabilities – DFAM for part quality improvement.	CO2
UNIT III	PHOTOPOLYMERIZATION AND POWDER BED FUSION PROCESSES	9
Fusion: SLS-	rization: SLA-Photo curable materials – Process - Advantages and Applications. Powder Bed Process description – powder fusion mechanism – Process Parameters – Typical Materials and Electron Beam Melting.	CO3
UNIT IV	EXTRUSION-BASED AND SHEET LAMINATION PROCESSES	9
	sed System: FDM-Introduction – Basic Principle – Materials – Applications and Limitations – Sheet Lamination Process:LOM - Gluing or Adhesive bonding – Thermal bonding	CO4
UNIT V	PRINTING PROCESSES AND BEAM DEPOSITION PROCESSES	9
Printing – A	nation technologies – Continuous mode – Drop on Demand mode –Three Dimensional dvantages – Bio-plotter - Beam Deposition Process: LENS- Process description – Material ocess parameters – Materials – Benefits – Applications	CO5

TOTAL: 45 PERIODS

TEXTBOOKS

- 1 Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third edition, World Scientific Publishers, 2010.
- 2 Ian Gibson, David W.Rosen, Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing" Springer, 2010.

- 1 Andreas Gebhardt "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing" Hanser Gardner Publication 2011.
- 2 Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.
- 3 Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications : A tool box for prototype development", CRC Press, 2007.

	COURSE OUTCOMES Upon completion of the course, students will be able to							
CO1	Summarize the need for Additive manufacturing.							
CO2	Explain the working of design tools in AM product making							
CO3	Distinguish photo polymerization and PBF processes							
CO4	Compare working benefits of extrusion and sheet lamination processes							
CO5	Discuss the effect of drop/beam deposition in AM.							

MAPPING OF COs WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	2	-	-	2	3	1	1	-	-	1	3	1
CO2	3	-	2	-	-	2	3	1	1	-	-	1	3	1
СОЗ	3	-	2	-	-	2	2	1	1	-	-	1	3	1
CO4	3	-	2	-	-	2	2	1	1	-	-	1	3	1
CO5	3	-	2	-	2	2	2	1	1	-	-	1	3	1

engineerii	REVERSE ENGINEERING t knowledge to the students about the need for and the various tools required for ring with exposure to the software needed for implementing reverse engineering. NTRODUCTION	L 3	T 0	P 0	C				
To impart engineering	ng with exposure to the software needed for implementing reverse engineering.			U					
To impart engineering	ng with exposure to the software needed for implementing reverse engineering.	rever	se						
engineerii	ng with exposure to the software needed for implementing reverse engineering.	rever	se						
IINIT I IN	VTRODUCTION								
	(INODECTION)	UNIT I INTRODUCTION							
Scope and tasks of RE - Domain analysis- process of duplicating									
UNIT II TO	OOLS FOR RE				8				
Functionality- dimensional- developing technical data - digitizing techniques - construction of surface model - solid-part material- characteristics evaluation - software and application-prototyping - verification									
UNIT III CO	UNIT III CONCEPTS								
•	rse Engineering – Preserving and preparation for the four-stage process – Evaluchnical Data Generation, Data Verification, Project Implementation.	ıatioı	n and	C	03				
UNIT IV DA	ATA MANAGEMENT				10				
Data reverse eng	gineering – Three data Reverse engineering strategies – Definition – organiza	ation	data						
issues - Software	e application – Finding reusable software components – Recycling real-time e	mbe	dded						
software – Design	n experiments to evaluate a Reverse Engineering tool – Rule based detection for	or re	verse	C	Ο4				
<u> </u>	r interfaces – Reverse Engineering of assembly programs: A model based appr								
its logical basics									
<u> </u>	NTEGRATION				10				
Cognitive approa	ach to program understated - Integrating formal and structured methods in	n re	verse						
engineering – In	ntegrating reverse engineering, reuse and specification tool environments to	o re	verse						
engineeringco	oordinate measurement – feature capturing – surface and solid members			C	O5				
TOTAL: 45 PER									

TEXTBOOKS

- 1. Reverse Engineering, Linda Wills, Kluiver Academic Publishers, 1996 6. White paper on RE
- 2. Reverse Engineering, Katheryn, A. Ingle, McGraw-Hill, 1994.

- 1. Co-ordinate Measurement and reverse engineering, Donald R. Honsa, ISBN 1555897, American Gear Manufacturers Association
- 2. Data Reverse Engineering, Aiken, Peter, McGraw-Hill, 1996
- 3. Design Recovery for Maintenance and Reuse, T J Biggerstaff, IEEE Corpn. July 1991
- 4. S. Rugaban, Technical Report, Georgia Inst. of Technology, 1994

	COURSE OUTCOMES Upon completion of the course, students will be able to						
CO1	nderstand the basic principles of reverse engineering						
CO2	Select the suitable tools and methodology for reverse engineering any product						
СОЗ	Generate Technical Data and verify						
CO4	Manage the data with different tools						
CO5	Integrate the reverse engineering						

MAPPING OF COS WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs) COs											PROGRAM SPECIFIC OUTCOMES (PSOs)		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	3	-	-	-	-	-	-	3	3	-	-
CO2	3	3	-	3	-	-	-	-	-	-	3	3	-	-
CO3	3	3	-	3	-	-	-	-	-	-	3	3	-	-
CO4	3	3	-	3	-	-	-	-	-	-	3	3	-	-
CO5	3	3	-	3	-	-	-	-	-	-	3	3	-	-

OMB413	DIGITAL MARKETING	L	Т	P	C
		3	0	0	3
OBJECTIVES					

0

- * The primary objective of this module is to examine and explore the role and importance of digital marketing in today's rapidly changing business environment.
- ❖ It also focusses on how digital marketing can be utilised by organisations and how its effectiveness can measured.

UNIT I	INTRODUCTION TO DIGITAL MARKETING	9				
	pace- Digital Marketing Strategy- Components -Opportunities for building Brand- Website Creation- Content Marketing.	CO1				
UNIT II	SEARCH ENGINE OPTIMISATION	9				
Search Engine optimization - Keyword Strategy - SEO Strategy - SEO success factors -On-Page Techniques - Off-Page Techniques. Search Engine Marketing- How Search Engine works- SEM components- PPC advertising -Display Advertisement.						
UNIT III	E-MAIL MARKETING	9				
with Social Me Marketing- Mob	ng - Types of E- Mail Marketing - Email Automation - Lead Generation – Integrating Email edia and Mobile- Measuring and maximising email campaign effectiveness. Mobile bile Inventory/channels- Location based; Context based; Coupons and offers, Mobile Apps, rce, SMS Campaigns-Profiling and targeting.	СОЗ				
UNIT IV	SOCIAL MEDIA MARKETING STRATEGIES	9				
Social Media Marketing - Social Media Channels- Leveraging Social media for brand conversations and buzz .Successful /benchmark Social media campaigns. Engagement Marketing- Building Customer relationships - Creating Loyalty drivers - Influencer Marketing.						
UNIT V	BRAND PERFORMANCE	9				
•	rmation & Channel Attribution- Analytics- Ad-words, Email, Mobile, Social Media, Webnging your strategy based on analysis- Recent trends in Digital marketing.	CO5				

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Fundamentals of Digital Marketing by Puneet Singh Bhatia; Publisher: Pearson Education; First edition 2017.
- 2.Digital Marketing by Vandana Ahuja ;Publisher: Oxford University Press (April 2015)

REFERENCE BOOKS

- 1. Marketing 4.0: Moving from Traditional to Digital by Philip Kotler; Publisher: Wiley; 1st edition 2017
- 2. Ryan, D. (2014). Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation, Kogan Page Limited.
- 3. Pulizzi, J Beginner's Guide to Digital Marketing, Mcgraw Hill Education.
- 4. Barker, Barker, Bormann and Neher(2017), Social Media Marketing: A Strategic Approach, 2E South-Western, Cengage Learning.

COURSE OUTCOMES

Upon completion of the course, students will be able to:

CO1	To examine and explore the role and importance of digital marketing in today's rapidly changing business environment.
CO2	To focusses on how digital marketing can be utilised by organisations and how its effectiveness can measured.
CO3	To know the key elements of a digital marketing strategy
CO4	To study how the effectiveness of a digital marketing campaign can be measured
CO5	To demonstrate advanced practical skills in common digital marketing tools such as SEO, SEM, Social media and Blogs.

MAPPING OF COs WITH POs AND PSOs

COs		PROGRAMME OUTCOMES (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	1	3	3	1	1	2	1	3	1	-	2
CO2	-	-	-	1	3	1	1	2	1	1	1	1	-	2
СОЗ	-	-	-	2	1	1	2	1	3	1	1	2	-	2
CO4	-	-	-	2	3	3	2	1	1	1	3	2	-	2
CO5	-	-	-	1	2	2	2	3	1	1	2	2	-	2

		L	T	P	С				
OAD414	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	3	0	0	3				
COURSE OBJECTIVES:									
❖ To pro	vide a strong foundation on fundamental concepts in Artificial Intelligence.								
❖ To ena	ble Problem-solving through various searching techniques.								
Introdu	ce Machine Learning and supervised learning algorithms								
Study a	about ensembling and unsupervised learning algorithms								
❖ To app	ly Artificial Intelligence techniques primarily for machine learning.								
UNIT I	INTRODUCTION TO AI AND SEARCHING				9				
Introduction	to AI - AI Applications - Problem solving agents - search algorithms - uninfo	ormed	searc	h					
_	Heuristic search strategies: A* algorithm - Game Playing: Alpha Beta Pruning	- co	nstraiı	nt C	01				
satisfaction p	problems (CSP).								
UNIT II	KNOWLEDGE REPRESENTATION				9				
Knowledge-	-based agents - propositional logic - propositional theorem proving - proposi	tional	mod	el					
_	agents based on propositional logic. First-order logic – forward chaining – backwar	rd cha	ining	- C	CO ₂				
resolution.									
UNIT III	SUPERVISED LEARNING				9				
Introduction	to machine learning - Linear Regression Models: Least squares, single & multip	ple va	riable	s,					

TOTAL: 45 PERIODS

CO₃

9

CO4

9

CO5

TEXTBOOKS

classifier

UNIT IV

UNIT V

Expectation maximization

1. Stuart Russell and Peter Norvig, "Artificial Intelligence – A Modern Approach", Fourth Edition, Pearson Education, 2021.

Bayesian linear regression, gradient descent, Linear Classification Models: Discriminant function Probabilistic

discriminative model - Logistic regression, Probabilistic generative model - Naive Bayes, Maximum margin

Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting, stacking, Unsupervised learning: K-means, Instance Based Learning: KNN, Gaussian mixture models and

Natural language processing-Morphological Analysis-Syntax analysis -Semantic Analysis-Ail applications -

Language Models - Information Retrieval - Information Extraction - Machine Translation - Machine

ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING

- 2. Elaine Rich and Kevin Knight, —Artificial Intelligence, Third Edition, Tata McGraw-Hill, 2010.
- 3. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.

REFERENCE BOOKS

- 1. Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems", Pearson Education, 2007
- 2. Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw Hill, 2008
- 3. Patrick H. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006
- 4. Deepak Khemani, "Artificial Intelligence", Tata McGraw Hill Education, 2013
- 5. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 6. Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.

INTELLIGENCE AND APPLICATIONS

Learning - Symbol-Based – Machine Learning: Connectionist – Machine Learning.

- 7. Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014
- 8. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.

COURSE OUTCOMES

Upon completion of the course, students will be able to

Upon	completion of the course, students will be able to														
CO1	Use ap	se appropriate search algorithms for problem solving													
CO2	Provide	rovide a basic exposition to the goals and methods of Artificial Intelligence.													
CO3	Build s	upervis	ed learr	ning mo	dels										
CO4	Build e	ensembl	ing and	unsupe	ervised	models									
		e problachine l			lls using	g the ac	quired l	knowled	dge in t	he areas	s of natu	ıral lang	guage pro	ocessing	
				MA	PPING	OF C	Os WI	ГН РО	s AND	PSOs					
COs					PRO	GRAM	1 OUT	COME	S (POs)			SPEC OUTC	OGRAM ECIFIC COMES PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	1	2	1	3	2	2	2	1	3	2	1	1	1	
CO2	2	1	2	1	3	2	2	2	1	3	2	1	1	1	
CO3	2	1	2	1	3	2	2	2	1	3	2	1	1	1	
CO4	2	1	2	1	3	2	2	2	1	3	2	1	1	1	
CO5	2	1	2	1	3	2	2	2	1	3	2	1	1	1	

OCC 4	22
OCS4	-22

MACHINE LEARNING TECHNIQUES

L	T	P	C
3	0	0	3

TOTAL: 45 PERIODS

COURSE OBJECTIVES:

- ❖ To understand the basic concepts of machine learning and probability theory.
- ❖ To learn the supervised learning and their algorithms.
- ❖ To understand unsupervised learning like clustering.
- ❖ To understand the theoretical and practical aspects of probabilistic graphical models.
- To learn other learning aspects such as reinforcement learning, representation learning, deep learning, neural networks and other technologies.

methodis und outer terminologies.	
UNIT I INTRODUCTION	9
Machine Learning – Types of Machine Learning – Supervised Learning – Unsupervised Learning – Basic Concepts in Machine Learning – Machine Learning Process – Weight Space – Testing Machine Learning Algorithms – A Brief Review of Probability Theory – Turning Data into Probabilities – Candidate Elimination Algorithm	5
UNIT II SUPERVISED LEARNING	9
Linear Models for Regression – Bayesian Linear Regression – Common Regression Algorithms – Simple Linear Regression – Multiple Linear Regression – Common Classification Algorithms – k-Nearest Neighbors – Decision Trees – Random Forest model – Support Vector Machines	
UNIT III UNSUPERVISED LEARNING	9
K-Means Clustering – Dirichlet Process Mixture Models – Spectral Clustering – Hierarchical Clustering – The Curse of Dimensionality – Dimensionality Reduction – Principal Component Analysis – Latent Variable Models (LVM) – Latent Dirichlet Allocation (LDA)	CO3
UNIT IV GRAPHICAL MODELS	9
Bayesian Networks – Conditional Independence – Naive Bayes Classifiers – Markov Chain Monte Carlo Methods – Sampling – Proposal Distribution – Markov Random Fields – Hidden Markov Model.	CO4
UNIT V INTELLIGENCE AND APPLICATIONS	9
Natural language processing-Morphological Analysis – Syntax analysis – Semantic Analysis –Ail applications – Language Models – Information Retrieval – Information Extraction – Machine Translation – Machine Learning - Symbol-Based – Machine Learning	CO5

TEXTBOOKS

- 1. Ethem Alpaydin, "Introduction to Machine Learning," Third Edition, Prentice Hall of India, 2015.
- 2. Stephen Marsland, —Machine Learning An Algorithmic Perspectivell, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.

- 1. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 2. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 3. Tom Mitchell, "Machine Learning", McGraw-Hill, 2017.
- 4. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Second Edition, Springer, 2008.
- 5. Fabio Nelli, "Python Data Analytics with Pandas, Numpy, and Matplotlib", Second Edition, Apress, 2018.

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Gain knowledge about basic concepts of machine learning techniques and terminology
CO2	Develop predictive model based on both input and output data using supervised algorithms
CO3	Ability to understand the unsupervised learning algorithm and dimensionality reduction techniques
CO4	Design systems that use the appropriate graphical models of machine learning
CO5	Improve problem solving skills using the acquired knowledge in the areas of natural language Processing with machine learning.

MAPPING OF COS WITH POS AND PSOS

COs		PROGRAM OUTCOMES (POs)											PROGRAM OUTCOMES (POs)					PROGRAM SPECIFIC OUTCOMES (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2						
CO1	2	3	3	2	1	-	-	-	-	-	-	1	-	-						
CO2	2	3	3	2	2	-	-	-	-	-	-	1	-	-						
СОЗ	2	3	3	2	3	-	-	-	-	-	-	1	-	-						
CO4	2	3	3	2	3	-	-	-	-	-	-	1	-	-						
CO5	2	2	3	2	1	-	-	-	-	-	-	1	-	-						

0.000422	ALICAMENTOED AND VIDOULAL DE ALTONY	L	T	P	C
OCS423	AUGMENTED AND VIRTUAL REALITY	3	0	0	3
COURSE	OBJECTIVES:				
❖ T	o gain the knowledge of historical and modern overviews and perspectives on virtual re-	eality			
❖ T	o learn the fundamentals of sensation, perception, and perceptual training.				
❖ T	o have the scientific, technical, and engineering aspects of augmented and virtual realit	y sys	tems.		
❖ T	o learn the evaluation of virtual reality from the lens of design.				
❖ T	o learn the technology of augmented reality and implement it to have practical knowled	dge.			
UNIT I	INTRODUCTION				9
reality, diff	n to Augmented-Virtual and Mixed Reality, Taxonomy, technology and features of the erence between AR, VR and MR, Challenges with AR, AR systems and functionality mods, visualization techniques for augmented reality.		_		CO1
UNIT II	VR SYSTEMS			ļ	9
tracking sy	cipline, Basic features of VR systems, Architecture of VR systems, VR hardware: VR istems, motion capture systems, data gloves, VR output hardware: visual displays, May, user performance studies, VR health and safety issues, Usability of virtual reality systems.	ethod	ology		CO2
UNIT III	STEREOSCOPIC VISION & HAPTIC RENDERING				9
	als of the human visual system, Depth cues, Stereopsis, Retinal disparity, Haptic sgorithms for haptic rendering and parallax, Synthesis of stereo pairs.	sense	, Наг	otic	CO3
UNIT IV	VR DEVELOPMENT				9
Challenges interaction	of VR in Mechanical development, Control Architectures, Rendering mechanical cotechniques: Manipulation Techniques and Input Devices, Interaction Techniques for 3D	ompo Mar	nents iipula	, 3D ition,	CO4
UNIT V	APPLICATIONS				9
AR softwa	re, Camera parameters and camera calibration, Marker-based augmented reality,	AR	Tool	kit,	

TEXTBOOKS

1. George Mather, Foundations of Sensation and Perception: Psychology Press; 2ndedition, 2009.

simulations, therapy, Understanding Meta, AR VR in Cyber Currency, Mechanics in VR, Matlab.

- 2. The VR Book: Human-Centered Design for Virtual Reality, by Jason Jerald
- 3. Learning Virtual Reality by Tony Parisi, O' Reilly
- 4. Burdea, G. C. and P. Coffet. Virtual Reality Technology, Second Edition. Wiley, IEEE Press, 2003/2006.

Medical, military & mechanical applications, Advanced Real time Tracking, other applications, games, movies,

CO₅

TOTAL: 45 PERIODS

5. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.

- 1. Steven M. LaValle, "Virtual Reality", Cambridge University Press, 2016
- 2. Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations of Effective Design, Morgan Kaufmann, 2009.
- 3. Schmalstieg / Hollerer, "Augmented Reality: Principles & Practice", Pearson Education India; First edition(12 October 2016),ISBN-10: 9332578494

COURSE OUTCOMES

Upon completion of the course, students will be able to

CO1	Identify, examine, and develop software that reflects fundamental techniques for the design and deployment of VR and AR experiences.
CO2	Describe how VR and AR systems work.
CO3	Choose, develop, explain, and defend the use of particular designs for AR and VR experiences.
CO4	Evaluate the benefits and drawbacks of specific AR and VR techniques on the human body.
CO5	Identify and examine state-of-the-art AR and VR design problems and solutions from the industry and academia.

MAPPING OF COs WITH POS AND PSOS

COs				PI	ROGR	AM OU	JTCOM	MES (PO	Os)				PROC SPEC OUTC (PS	CIFIC OMES
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	1	2	1	-	-	-	-	-	-	-	-	1	-
CO2	1	2	2	-	2	-	-	-	-	-	-	1	-	-
СОЗ	1	2	2	-	-	-	-	-	-	-	-	2	-	-
CO4	1	2	2	-	2	-	-	-	-	-	-	1	-	-
CO5	1	2	2	2	3	-	-	-	-	-	-	2	-	-

		L	T	P	C		
OME416	OME416 TESTING OF MATERIALS 3						
	VES nderstand the various destructive and non-destructive testing methods of materials and cations.	its in	dust	rial			
UNIT I	UNIT I INTRODUCTION TO MATERIALS TESTING						

UNIT I	INTRODUCTION TO MATERIALS TESTING							
	of materials, Classification of material testing, Purpose of testing, Selection of material, ent of testing, Testing organizations and its committee, Testing standards, Result Analysis, s of testing	CO1						
UNIT II	MECHANICAL TESTING	9						
(Izod, Cha	on to mechanical testing, Hardness test (Vickers, Brinell, Rockwell), Tensile test, Impact test rpy) - Principles, Techniques, Methods, Advantages and Limitations, Applications. Bend test, Creep and Fatigue test - Principles, Techniques, Methods, Advantages and Limitations, ns.	CO2						
UNIT III	NON DESTRUCTIVE TESTING	9						
Advantages	pection, Liquid penetrant test, Magnetic particle test, Thermography test – Principles, Techniques, and Limitations, Applications. Radiographic test, Eddy current test, Ultrasonic test, Acoustic Principles, Techniques, Methods, Advantages and Limitations, Applications.	CO3						
UNIT IV	MATERIAL CHARACTERIZATION TESTING	9						
Types, Adv	ic and Microscopic observations, Optical and Electron microscopy (SEM and TEM) - Principles, vantages and Limitations, Applications. Diffraction techniques, Spectroscopic Techniques, Electrical tic Techniques- Principles, Types, Advantages and Limitations, Applications.	CO4						
UNIT V	OTHER TESTING	9						
Dynamic Fluorescen	esting: Differential scanning calorimetry, Differential thermal analysis. Thermo- mechanical and mechanical analysis: Principles, Advantages, Applications. Chemical Testing: X-Ray ce, Elemental Analysis by Inductively Coupled Plasma-Optical Emission Spectroscopy and ass Spectrometry.	CO5						

TOTAL: 45 PERIODS

TEXTBOOKS

- 1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2009.
- 2. Cullity, B. D., "Elements of X-ray diffraction", 3rd Edition, Addison-Wesley Company Inc., New York, 2000.
- 3. P. Field Foster, "The Mechanical Testing of Metals and Alloys" 7th Edition, Cousens Press, 2007.

- 1. Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, American Society for Metals, 1978.
- 2. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA.
- 3. Brandon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986.

	RSE OUTCOMES completion of the course, students will be able to
	Explain the role of testing organization and select the appropriate testing standards for materials.
CO2	Identify the suitable destructive testing method to inspect industrial components.
соз	Select the appropriate Non-Destructive testing method to assess the quality of industrial components.
CO4	Illustrate the Material characterization testing methods and able to analyse the tested results.
CO5	Demonstrate the various thermal and chemical testing methods of materials.

MAPPING OF COs WITH POS AND PSOS

COs	PROGRAM OUTCOMES (POs)													PROGRAM SPECIFIC OUTCOMES (PSOs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	-	-	3	-	-	-	-	-	-	3	3	-	-	
CO2	3	3	-	3	-	-	-	-	-	-	3	3	-	-	
CO3	3	3	-	3	-	-	-	-	-	-	3	3	-	-	
CO4	3	3	-	3	-	-	-	-	-	-	3	3	-	-	
CO5	3	3	-	3	-	-	-	-	-	-	3	3	-	-	